Algebra Vocabulary	
Terms	A term is separated by a + or - sign E.g: $5 x-3 y+2$ There are 3 terms in this equation: $5 x,-3 y$ and 2
Coefficient	The number in front. E.g: In the term 5 y , y's coefficient is 5
Constant	Constant is the single number which does not have any letters or numbers attached to it.
Like terms	Terms including exactly the same letter or combination of letters. E.g: $6 p, 8 p$ and $5 p$ are like terms ab, 10ab and $-2 a b$ are like terms
Unlike terms	Terms which have different letters or combination of letters. E.g: $3 x$ and $3 y$ are unlike terms

Simplifying Expressions	
Rule	Example
Any numbers in the expression are multiplied.	$5 \times 6 x=30 x$
Numbers are placed in front of letters when multip-	$x \times 3 y=3 x y$
lying.	
If there is more than one letter they are written in alphabetical order.	$2 q \times 7 p=14 p q$
Numbers can be multiplied separately, then	$6 p \times 3 p$
multiply letters.	$=6 \times 3 \times p \times p$
	$=18 p^{2}$
Like terms can be grouped together and then	$S i m p l i f y:$
added or	
subtracted.	$2 x+y-x+8 y$
Remember, the + and - signs go with	$=(2 x-x)+(y+$
the terms on their right.	$8 y)$

Examples - Simplifying

Powers Rules	
p^{4} means p multiplied by itself four times	p^{4}
	$=p \times p \times p \times p$
Simplify as powers and then multiply by	$x X \times X y \times y$
each other	$=x^{2} y^{2}$
When multiplying expressions with the	$x^{2} \times x^{5}$
same base (letter), we add the powers.	$=x^{2+5}$
	$=x^{7}$
When dividing expressions with the	$20 x^{4} \div 10 x$
same base, we can subtract the powers.	$=20 x^{4-1} \div 10$
	$=2 x^{3}$

Expanding

Multiply each term in the brackets by the outside term.
Then add together and simplify.
Examples:

$$
\begin{array}{ll}
8(c+d-e) & 4 x(2 x-5) \\
=8 \times c+8 \times d-8 \times e & =(4 x \times 2 x)+(4 x \times-5) \\
=8 c+8 d-8 e & =8 x^{2}-20 x
\end{array}
$$

Factorising

1) Find the Highest Common Factor (number that divides in all terms equally) of all terms. Write this outside the brackets.
2) Divide each term by the HCF, putting result in the brackets.

Note: The HCF could be a number or a letter.

Factorising Example

Solving Equations

The goal of solving an equation is to get the letter term on the left of the $=$ sign and the number/value on the right.
Remember if a number or term is moved across the equals, then you must use the opposite operation.

By ceyre

cheatography.com/ceyre/

Published 3rd November, 2020. Last updated 4th November, 2020.
Page 1 of 4 .

[^0]
Solving Examples

Converting Fractions, Decimals and Percentages

Percentages
represent an amount out of 100

	This can then be simplified by dividing both numbers by their HCF. $65 / 100=13 / 20$ (HCF of 65 and 100 is 5)
Decimals \leftrightarrow	Decimal to Percentage:
Percentages	Divide \% by 100 (or move decimal point to the left by two places) $65 \%=65 \div 100=0.65$ Percentage to Decimal: Multiply the decimal by 100 (or move decimal point to the right by two places) $0.74=0.74 * 100=74 \%$
Fractions to decimals	Divide the numerator by the denominator: $2 / 3=2 \div 3=0.33333$
Decimals to fractions	Take the decimal as an amount out of 10 , 100, 100 etc depending on how many decimal places: $\begin{aligned} & 0.65=65 / 100(2 d p) \\ & 0.625=625 / 1000(3 \mathrm{dp}) \end{aligned}$ From here you may be able to simplify further using HCF

Calculating a Fraction or Percentage of an amount

If calculating a fraction or percentage of an amount, multiply the amount by the fraction or percentage.
For example:
25% of $\$ 250=\$ 250 \times 25 \%=\$ 62.50$
$1 / 3$ of $300=300 \times 1 / 3=100$

Measurement - Converting Length Units

Measurement - Converting Capacity Units

Measurement - Converting Volume Units

Measurement - Converting Volume and Capacity

Statistics - Calculations

Statistics - Example

By ceyre

cheatography.com/ceyre/

Published 3rd November, 2020. Last updated 4th November, 2020. Page 2 of 4 .

Sponsored by Readable.com
Measure your website readability!
https://readable.com

```
Statistics - Dot Plot/Box and Whisker
```


14, (15) \uparrow Excellence ressils for Year 9
the info
spread

By ceyre

cheatography.com/ceyre/

Published 3rd November, 2020.
Last updated 4th November, 2020.
Page 3 of 4 .

Sponsored by Readable.com
Measure your website readability!
https://readable.com

[^0]: Sponsored by Readable.com Measure your website readability! https://readable.com

