Polygons	
Number of Sides	Name of Polygon
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	Decagon
12	Dodecagon
n	n-gon

Vocabulary

Term	Definition
Vertex of the polygon	The common endpoint of two sides of a polygon
Diagonal	A segment connecting any two nonconsecutive vertices of a polygon
Regular polygon	An equilateral and equiangular polygon (always convex)
Concave polygon	A polygon with parts of a diagonal on the exterior of the polygon
Convex polygon	A polygon with every part of the diagonals on the interior
Rectangle	A quadrilateral with four right angles
Rhombus	A quadrilateral with four congruent sides
Square	A quadrilateral with four right angles and four congruent sides; it is a parallelogram, a rectangle, and a rhombus
Kite	A quadrilateral with exactly two pairs of consecutive sides
Trapezoid	A quadrilateral with exactly one pair of parallel sides
Base	One of the parallel sides of a trapezoid
Leg	One of the nonparallel sides of a trapezoid
Isosceles trapezoid	A trapezoid in which the legs are congruent

Vocabulary (cont)

Midsegment of a The segment whose endpoints are the midpoints trapezoid of the legs of a trapezoid

Theorems \& Postulates

Name Theorem

Polygon angle sum theorem

Polygon exterior angle sum theorem

Trapezoid
Midsegment
Theorem

The sum of the interior angle measures of a convex polygon with n sides is $(n-2) 180$ degrees. The sum of the exterior angle measures, one angle at each vertex, of a convex polygon is 360 degrees.
The midsegment of a trapezoid is parallel to each base, and its length is one half the sum of the lengths of the bases

Formulas

Name	Formula
Sum of interior angle measures	$(n-2) 180$
Midsegment of a trapezoid length	$1 / 2($ base $1+$ base 2)
Midpoint Formula	$(x, y)=[(x 1+x 2) / 2],[(y 1+y 2) / 2]$
Distance formula	$\sqrt{ }(x 2-x 1)^{2}+(y 2-y 1)^{2}$

Properties of Parallelograms

If a quadrilateral is a parallelogram, then...
Its opposite sides are congruent AND
Its opposite angles are congruent AND
Its consecutive angles are supplementary AND
Its diagonals bisect each other.

If...

One pair of opposite sides of a quadrilateral are parallel and congruent OR

Both pairs of opposite sides of a quadrilateral are congruent OR
Both pairs of opposite angles of a quadrilateral are congruent OR
An angle of a quadrilateral is supplementary to both of its consecutive angles OR
The diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

By Celia (CCRoses)

cheatography.com/ccroses/

Published 9th March, 2020.
Last updated 9th March, 2020.
Page 1 of 2.

[^0]
Cheatography

Properties of Rectangles \& Rhombuses

If a quadrilateral is a rectangle, then...
It is a parallelogram AND
Its diagonals are congruent.

If a quadrilateral is a rhombus, then...
It is a parallelogram AND
Its diagonals are perpendicular AND
Each diagonal bisects a pair of opposite angles.

Properties of Kites and Trapezoids

If a quadrilateral is a kite, then...
Its diagonals are perpendicular AND
Exactly one pair of opposite angles are congruent.

If a quadrilateral is an isosceles trapezoid, then...
Each pair of base angles are congruent AND
Its diagonals are congruent.

If...
A trapezoid has one pair of congruent base angles OR
A trapezoid has congruent diagonals,
then the trapezoid is isosceles.

By Celia (CCRoses)
cheatography.com/ccroses/

Published 9th March, 2020.
Last updated 9th March, 2020.
Page 2 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

[^0]: Sponsored by Readable.com
 Measure your website readability!
 https://readable.com

