\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Cat\_Wx} \pdfinfo{ /Title (econ-2-macro.pdf) /Creator (Cheatography) /Author (Cat\_Wx) /Subject (Econ 2 Macro Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A30A0A} \definecolor{LightBackground}{HTML}{FCF7F7} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Econ 2 Macro Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Cat\_Wx} via \textcolor{DarkBackground}{\uline{cheatography.com/191326/cs/39760/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Cat\_Wx \\ \uline{cheatography.com/cat-wx} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 4th August, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Key Equations}} \tn % Row 0 \SetRowColor{LightBackground} & "\_ \_" denotes subscript (eg. {\emph{P\_t+1\_/P\_t\_}}) \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{17.67cm}}{\{\{bb=2\}\}\{\{nobreak\}\} {\bf{Production and Prices}}} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \{\{nobreak\}\} Production Function & \{\{nobreak\}\} production depends on the inputs of capital, labour and technology factor \{\{nl\}\}\{\{nl\}\}{\emph{Y = F (K, E N)}} \{\{nl\}\}\{\{nl\}\} {\bf{Y}} = production \{\{nl\}\} {\bf{K}} = capital \{\{nl\}\} {\bf{N}} = labour \{\{nl\}\} {\bf{E}} = technology factor \tn % Row Count 16 (+ 12) % Row 3 \SetRowColor{white} Cobb-Douglas Production Function & {\emph{Y = K\textasciicircum{}α\textasciicircum{} (E N)\textasciicircum{}1-α\textasciicircum{}}} \tn % Row Count 18 (+ 2) % Row 4 \SetRowColor{LightBackground} Marginal Product of Labour & take derivatice of {\emph{Y = K\textasciicircum{}α\textasciicircum{} (E N)\textasciicircum{}1-α\textasciicircum{}}} with respect to {\emph{N}} \{\{nl\}\}\{\{nl\}\} {\emph{MPL = (1 - α) E\textasciicircum{}1-α\textasciicircum{} (K/N)\textasciicircum{}α\textasciicircum{}}} \tn % Row Count 24 (+ 6) % Row 5 \SetRowColor{white} Monopoloistc Competition Price & {\emph{P = (1+ μ ) MC}} \{\{nl\}\}\{\{nl\}\} {\bf{μ}} = mark-up \tn % Row Count 27 (+ 3) % Row 6 \SetRowColor{LightBackground} Marginal Cost & {\emph{MC = W/MPL}} \tn % Row Count 28 (+ 1) % Row 7 \SetRowColor{white} Marginal Cost in term of Cobb-Douglas & {\emph{MPL = K\textasciicircum{}α\textasciicircum{} (1 - α) E\textasciicircum{}1-α\textasciicircum{} N\textasciicircum{}-α\textasciicircum{} = (1 - α) Y/N}} \{\{nl\}\}\{\{nl\}\} and thus \{\{nl\}\}\{\{nl\}\} {\emph{WN/PY = 1-α/1+μ}} \tn % Row Count 34 (+ 6) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Key Equations (cont)}} \tn % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{17.67cm}}{\{\{nobreak\}\}} \tn % Row Count 1 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{17.67cm}}{\{\{bb=2\}\}{\bf{Real Interest Rate, Investment, and Consumption}}} \tn % Row Count 3 (+ 2) % Row 10 \SetRowColor{LightBackground} Inflation & rate of growth of price level \{\{nl\}\}\{\{nl\}\} {\emph{π\_t\_ = ∆P\_t\_/P\_t-1\_}} \{\{nl\}\}\{\{nl\}\} One plus real interest rate is the price of goods today divided by the discounted price of goods next year \{\{nl\}\}\{\{nl\}\} {\emph{1 + r\_t+1\_ = \seqsplit{P-t/(P\_t+1\_/(1+i\_t\_))} = \seqsplit{1+i\_t\_/(P\_t+1\_/P\_t\_)} = 1+i\_t\_/1+π\_t+1\_}} \{\{nl\}\}or\{\{nl\}\} {\emph{r\_t+1\_ ≈ i\_t\_ - π\_t+1\_}} \tn % Row Count 20 (+ 17) % Row 11 \SetRowColor{white} Firm Investment & to increase capital stock and replace depreciated capital \{\{nl\}\}\{\{nl\}\} {\emph{I\_t\_ = K\textasciicircum{}d\textasciicircum{}\_t+1\_ - K\_t\_ + δK\_t\_}}\{\{nl\}\}\{\{nl\}\} {\bf{K\textasciicircum{}d\textasciicircum{}\_t+1\_}} = desired capital stock next year \{\{nl\}\} {\bf{δ}} = depricitation \tn % Row Count 30 (+ 10) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Key Equations (cont)}} \tn % Row 12 \SetRowColor{LightBackground} Profit Maximising Investment Level & the real marginal revenue product minus depreciation is equal to the real interest rate \{\{nl\}\}\{\{nl\}\} {\emph{MPK/I+μ - δ = r}} \tn % Row Count 6 (+ 6) % Row 13 \SetRowColor{white} Investment Function & investment depends on real interest rate, expected future income and the existing capital stock at the beginning of the period \{\{nl\}\}\{\{nl\}\} {\emph{I = I (r, Y\textasciicircum{}e\textasciicircum{}, K)}} \{\{nl\}\}\{\{nl\}\} {\bf{r}} = real interest rate \{\{nl\}\} {\bf{Y\textasciicircum{}e\textasciicircum{}}} = expected future income \{\{nl\}\} {\bf{K}} = existing capital stock at beginning of period \tn % Row Count 22 (+ 16) % Row 14 \SetRowColor{LightBackground} Utility-maximising Consumption/Savings Decision & ratio of marginal utility of consuming today divided by discounted marginal utility next year is equal to one plus the real interest rate \{\{nl\}\}\{\{nl\}\} {\emph{u'(C\_t\_)/u'(C\_t+1\_)/(1+ρ) = 1 + r\_t+1\_}} \{\{nl\}\}\{\{nl\}\} {\bf{ρ}} = subjective discount rate \tn % Row Count 34 (+ 12) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Key Equations (cont)}} \tn % Row 15 \SetRowColor{LightBackground} Real Disposable Income & production minus tax payments plus the real interest rate on net claims on government and foreign households and firms \{\{nl\}\}\{\{nl\}\} {\emph{Y\textasciicircum{}d\textasciicircum{} = Y - T +r(D + F)}} \tn % Row Count 8 (+ 8) % Row 16 \SetRowColor{white} Consumption Function & consumption depends on income today, future expected income, the real interest rate and level of assests \{\{nl\}\}\{\{nl\}\} {\emph{C = C(Y\textasciicircum{}d\textasciicircum{}, Y\textasciicircum{}e\textasciicircum{} - T\textasciicircum{}e\textasciicircum{}, r, A)}} \tn % Row Count 16 (+ 8) % Row 17 \SetRowColor{LightBackground} \mymulticolumn{2}{x{17.67cm}}{\{\{nobreak\}\}} \tn % Row Count 17 (+ 1) % Row 18 \SetRowColor{white} \mymulticolumn{2}{x{17.67cm}}{\{\{bb=2\}\} {\bf{Long-run Growth}}} \tn % Row Count 18 (+ 1) % Row 19 \SetRowColor{LightBackground} Constant returns to scale & production per effective worker depends on the capital stock per effective worker \{\{nl\}\}\{\{nl\}\} {\emph{Y/EN = F (K/EN', 1) = f(k)}} \{\{nl\}\} where {\emph{k = K/EN'}} \tn % Row Count 26 (+ 8) % Row 20 \SetRowColor{white} Steady State Growth Path & capital stock per effective worker is determined by \{\{nl\}\}\{\{nl\}\} {\emph{f'(k*)/1+μ - δ = r ̅}} \tn % Row Count 31 (+ 5) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Key Equations (cont)}} \tn % Row 21 \SetRowColor{LightBackground} Constant Capital per Effective Worker on Steady State Growth Path & capital stock and production grow at same rate as the effective number of workers \{\{nl\}\}\{\{nl\}\} {\emph{K = k*EN}}, {\emph{Y = f(k*)EN}} \{\{nl\}\} {\emph{ ∆K/K = ∆Y/Y = g+n}} \tn % Row Count 8 (+ 8) % Row 22 \SetRowColor{white} Long Run Level of Real Interest Rate (closed econ) & is equal to the subjective discount rate plus the technological growth rate \{\{nl\}\}\{\{nl\}\} {\emph{ r ̅ ≈ ρ + g}} \tn % Row Count 14 (+ 6) % Row 23 \SetRowColor{LightBackground} \mymulticolumn{2}{x{17.67cm}}{\{\{nobreak\}\}} \tn % Row Count 15 (+ 1) % Row 24 \SetRowColor{white} \mymulticolumn{2}{x{17.67cm}}{\{\{bb=2\}\} {\bf{The Labour Market and Phillips Curve}}} \tn % Row Count 16 (+ 1) % Row 25 \SetRowColor{LightBackground} Unemployment Rate & fraction of labour force not employed \{\{nl\}\}\{\{nl\}\} {\emph{u = U/L = L-N/L}} \tn % Row Count 20 (+ 4) % Row 26 \SetRowColor{white} Wage-setting Equation & if unemployment is above natural level, firms want to raise wages less than the average wage increase, and conversely \{\{nl\}\}\{\{nl\}\} {\emph{ ∆W\textasciicircum{}d\textasciicircum{}\_t\_/W\_t-1\_ = ∆W\_t\_/W\_t-1\_ - b(u\_t\_ - u\textasciicircum{}n\textasciicircum{}\_t)}} \tn % Row Count 30 (+ 10) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Key Equations (cont)}} \tn % Row 27 \SetRowColor{LightBackground} Unemployment on Natural Level & in the long run desired wages must be equal to actual wage increases, so unemployment must be on a natural level \{\{nl\}\}\{\{nl\}\} {\emph{N\textasciicircum{}n\textasciicircum{} = (1 - u\textasciicircum{}n\textasciicircum{})L}} \tn % Row Count 8 (+ 8) % Row 28 \SetRowColor{white} Phillips Curve & assuming that a share 1- λ of wages is set in advance \{\{nl\}\}\{\{nl\}\} {\emph{∆W/W = ∆W\textasciicircum{}e\textasciicircum{}/W - b ̂ (u - u\textasciicircum{}n\textasciicircum{})}} \{\{nl\}\} ; {\emph{b ̂ = λb/1-λ}} \tn % Row Count 15 (+ 7) % Row 29 \SetRowColor{LightBackground} Rate of Wage Increase (short run) & depends on the expected wage increase and unemployment \{\{nl\}\} short-run analysis disregard capital, so inflation is the rate of wage increase minus productivity growth \{\{nl\}\}\{\{nl\}\} {\emph{π = ∆W/W - ∆E/E}} \tn % Row Count 26 (+ 11) % Row 30 \SetRowColor{white} Phillips Curve (inflaation) & relates inflation to expected inflation, the output gap and a cost-push shock \{\{nl\}\}\{\{nl\} {\emph{π = π\textasciicircum{}e\textasciicircum{} + βY ̂+ z}} \{\{nl\}\}\{\{nl\}\} {\bf{{\emph{π\textasciicircum{}e\textasciicircum{}}}}} = expected inflation \{\{nl\}\} {\bf{{\emph{Y ̂}}}} = output gap - has a circumflex \{\{nl\}\} {\bf{{\emph{z}}}} = cost-push shock \tn % Row Count 39 (+ 13) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Key Equations (cont)}} \tn % Row 31 \SetRowColor{LightBackground} \mymulticolumn{2}{x{17.67cm}}{\{\{nobreak\}\}} \tn % Row Count 1 (+ 1) % Row 32 \SetRowColor{white} \mymulticolumn{2}{x{17.67cm}}{\{\{bb=2\}\} {\bf{Government Debt}}} \tn % Row Count 2 (+ 1) % Row 33 \SetRowColor{LightBackground} Change in Real Government Debt & equal to the primary deficit plus the real interest rate \tn % Row Count 5 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{General (intro)}} \tn % Row 0 \SetRowColor{LightBackground} Macroeconomics & - production \{\{nl\}\} - employment \{\{nl\}\} - price increase \{\{nl\}\} - interest rates \{\{nl\}\} Macroeconomic models \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} Three Markets & - labour \{\{nl\}\} - goods - credit (money) \tn % Row Count 8 (+ 2) % Row 2 \SetRowColor{LightBackground} Three Decision-makers & - typical firm \{\{nl\}\} - typical household \{\{nl\}\} - policymakers \tn % Row Count 12 (+ 4) % Row 3 \SetRowColor{white} Monetary Policy & {\bf{central banks}} \{\{nl\}\} - set the interest rate \tn % Row Count 15 (+ 3) % Row 4 \SetRowColor{LightBackground} Fiscal Policy & {\bf{government}} \{\{nl\}\} - decides taxes and government expenditure \tn % Row Count 19 (+ 4) % Row 5 \SetRowColor{white} Basic Model Factors & {\bf{typical firm}}\{\{nl\}\}- price-setting \{\{nl\}\} - wage-setting \{\{nl\}\} - investment \{\{nl\}\} {\bf{typical consumer}} \{\{nl\}\} - consumption \tn % Row Count 26 (+ 7) % Row 6 \SetRowColor{LightBackground} Open Economy & trades with the rest of the world \tn % Row Count 28 (+ 2) % Row 7 \SetRowColor{white} Keynes Theory & nominal wages are 'rigid'/'sticky' \tn % Row Count 30 (+ 2) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{General (intro) (cont)}} \tn % Row 8 \SetRowColor{LightBackground} Classical Theory (real business cycle theory) & wages and prices are adjustable to equate supply and demand marets \tn % Row Count 4 (+ 4) % Row 9 \SetRowColor{white} Neoclassical Synthesis & even if wages and prices are sticky in the short run,\{\{nl\}\} we expect them to respond to changes in economic conditions over the long run \tn % Row Count 11 (+ 7) % Row 10 \SetRowColor{LightBackground} National Accounts & - flows of production, incomes, savings and investments in a period of time (year/quater) \tn % Row Count 16 (+ 5) % Row 11 \SetRowColor{white} Balance of Payements Statistics & - flow of payments connected to exports, imports, international transfers, capital flows \tn % Row Count 21 (+ 5) % Row 12 \SetRowColor{LightBackground} Value of Production (output) & sales of all firms and value of production in public sector added \{\{nl\}\} \{\{nl\}\} {\bf{output not a good measure as large share of output is used as input in other firms}} \tn % Row Count 30 (+ 9) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{General (intro) (cont)}} \tn % Row 13 \SetRowColor{LightBackground} Intermediate Goods & goods that are used as inputs in other firms \tn % Row Count 3 (+ 3) % Row 14 \SetRowColor{white} Value Added & subtract value of intermediate inputs from value of output \tn % Row Count 6 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{The Open Economy Long Run (Ch13)}} \tn % Row 0 \SetRowColor{LightBackground} Real Exchange Rate & price level in an open economy relative to the price level abroad, where price levels are converted to the same currency \{\{nl\}\}\{\{nl\}\} determinant of aggregate demand in the open country \tn % Row Count 10 (+ 10) % Row 1 \SetRowColor{white} Real Exchange Rate & price level of domestic goods relative to foreign goods \{\{nl\}\}\{\{nl\}\}{\emph{ε}}={\emph{eP}}/{\emph{P*}} \{\{nl\}\} {\bf{P}} = price of good production at home in domestic currency \{\{nl\}\} {\bf{P*}}= price of good produced abroad in foreign currency \{\{nl\}\} {\bf{{\emph{e}}}} = nominal exchange rate - price of domestic currency in terms of foreign currency \{\{nl\}\} {\bf{{\emph{ε}}}} = real exchange rate - price of domestically produced goods in terms of goods produced abroad \tn % Row Count 32 (+ 22) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{The Open Economy Long Run (Ch13) (cont)}} \tn % Row 2 \SetRowColor{LightBackground} Current Account & difference between savings and real investments in the country \{\{nl\}\}\{\{nl\}\} deficit = borrowing from abroad \{\{nl\}\}government/private sector/both borrowing to finance consumption and real investments in excess of income \tn % Row Count 11 (+ 11) % Row 3 \SetRowColor{white} (open) Interest Parity Condition & links interest rate differentials between countries to expected changes in exchange rate \tn % Row Count 16 (+ 5) % Row 4 \SetRowColor{LightBackground} Interest Parity Condition & for foreign lenders, the expected returns on loans in the currency of the small open economy must be the same as the expected return or loans in the foreign currency \{\{nl\}\}\{\{nl\}\} {\emph{i + ∆}}e\textasciicircum{}e\textasciicircum{}/e = {\emph{i*}} \{\{nl\}\} {\bf{left}}= interest rate in small open economy plus expected appreciation of currency \{\{nl\}\} {\bf{right}} = return on loans in foreign currency \tn % Row Count 34 (+ 18) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{The Open Economy Long Run (Ch13) (cont)}} \tn % Row 5 \SetRowColor{LightBackground} Long-run Analysis & - analyse the effects of changes in exogenous variables \{\{nl\}\} - assume that prices and wages have time to adjust, employment and production at natural levels \{\{nl\}\} - assume international financial markets are completely integrated, free flow of financial capital and interest parity condition holds \tn % Row Count 16 (+ 16) % Row 6 \SetRowColor{white} Real Interest Rate & determines real cost of borrowing and required return on investment \{\{nl\}\} - open economy it is tied to real in the world financial market\{\{nl\}\} - independent of savings and investment in the small open economy\{\{nl\}\} - adjusts in long run to bring equality between aggregate demand and natural level of production \tn % Row Count 32 (+ 16) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{The Open Economy Long Run (Ch13) (cont)}} \tn % Row 7 \SetRowColor{LightBackground} Nominal Exchange Rate & {\emph{e=ε P*/P}} \tn % Row Count 2 (+ 2) % Row 8 \SetRowColor{white} Constant Real Exchange Rate & relative change in the nominal exchange rate is equal to foreign inflation minus domestic inflation \{\{nl\}\}\{\{nl\}\} {\emph{∆e/e = π*-π}} \{\{nl\}\}\{\{nl\}\} {\emph{r=r*}} \tn % Row Count 10 (+ 8) % Row 9 \SetRowColor{LightBackground} Long Run Trends in Nominal Exchange rates & shown by {\emph{∆e/e = π*-π}} \{\{nl\}\} - inflation differentials between countries \{\{nl\}\} high inflation = depreciating nominal exchange rate \{\{nl\}\} high inflation for number of years = constant nominal exchange rate \{\{nl\}\} - exporters will find hard so must depreciate at some point \tn % Row Count 24 (+ 14) % Row 10 \SetRowColor{white} Long Run Equilibrium & expected change in exchange rate is equal to the actual change \{\{nl\}\}\{\{nl\}\} {\emph{i-π = i* -π*}} \{\{nl\}\} {\bf{ left}}= real interest rate in the small open economy \{\{nl\}\} {\bf{right}} = world real interest rate \{\{nl\}\} \{\{nl\}\}can also be written\{\{nl\}\}\{\{nl\}\} {\emph{i-i*= π-π*}} \tn % Row Count 38 (+ 14) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{The Open Economy Long Run (Ch13) (cont)}} \tn % Row 11 \SetRowColor{LightBackground} Nominal Interest Rate & a country with high inflation and depreciating currency must have a higher nominal interest rate to compensate international investors so that the real return is the same on loans in different currencies \tn % Row Count 11 (+ 11) % Row 12 \SetRowColor{white} Natural Level of Production & Y\textasciicircum{}{\emph{n}}\textasciicircum{} = F ( K, E ( 1 - u\textasciicircum{}{\emph{n}}\textasciicircum{} ) L ) \tn % Row Count 13 (+ 2) % Row 13 \SetRowColor{LightBackground} IS Equation & determines aggregate demand and production in the small open economy \{\{nl\}\}\{\{nl\}\}\{\{nobreak\}\} {\emph{Y=C ( Y\textasciicircum{}d\textasciicircum{}, Y\textasciicircum{}e\textasciicircum{} - T\textasciicircum{}e\textasciicircum{}, r*, A ) + I ( r*, Y\textasciicircum{}e\textasciicircum{}, K) + G + NX ( ε, Y*, Y )}} \{\{nl\}\} \{\{nl\}\} {\bf{C}}= private consumption (units of domestic goods) \{\{nl\}\} {\bf{NX}} = net exports ( units of domestic goods) \{\{nl\}\} {\bf{Y\textasciicircum{}d\textasciicircum{}}} = disposable income \{\{nl\}\} {\bf{Y\textasciicircum{}e\textasciicircum{}}} = expected future income \{\{nl\}\} {\bf{r*}} = real interest rate \{\{nl\}\} {\bf{A}} = assests \{\{nl\}\} {\bf{G}} = government spending \{\{nl\}\} {\bf{K}} = capital \{\{nl\}\} {\bf{I}} = investment \{\{nl\}\} {\bf{ε}} = real exchange rate \{\{nl\}\} {\bf{Y*}} = \{\{nl\}\} {\bf{T\textasciicircum{}e\textasciicircum{}}} = \{\{nl\}\}\{\{nl\}\} where \{\{nl\}\} {\emph{Y\textasciicircum{}d\textasciicircum{} = Y\textasciicircum{}n\textasciicircum{} - T +r* ( D + F )}} \tn % Row Count 46 (+ 33) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{The Open Economy Long Run (Ch13) (cont)}} \tn % Row 14 \SetRowColor{LightBackground} Natural Real Exchange Rate (open) & real exchange rate that is consistent with production at natural level \{\{nl\}\}\{\{nl\}\} {\emph{ε\textasciicircum{}n\textasciicircum{}}} \tn % Row Count 5 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \end{document}