\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Carter\_Anderson2024} \pdfinfo{ /Title (chemistry-chapter-14-15.pdf) /Creator (Cheatography) /Author (Carter\_Anderson2024) /Subject (Chemistry Chapter 14/15 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{009C05} \definecolor{LightBackground}{HTML}{F7FBF7} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Chemistry Chapter 14/15 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Carter\_Anderson2024} via \textcolor{DarkBackground}{\uline{cheatography.com/183917/cs/38311/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Carter\_Anderson2024 \\ \uline{cheatography.com/carter-anderson2024} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 21st April, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Determining the pH and Titrations}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The pH of a solution can be measured using either a pH meter or acid-base indicators.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Titration uses a solution of known concentration to determine the concentration of a solution of unknown concentration.} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{To determine the end point of a titration, one should choose indicators that change color over ranges that include the pH of the equivalence point.} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{When the molarity and volume of a known solution used in aa titration are known, then the molarity of a given volume of an unknown solution can be found.} \tn % Row Count 12 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.28942 cm} x{2.68758 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Vocab}} \tn % Row 0 \SetRowColor{LightBackground} Binary Acid & Contains only two different elements: hydrogen and one other electronegative element \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} Oxyacid & Compound of hydrogen, oxygen, and a third nonmetal element \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} Arrhenius Acid & Chemical compound that increases the concentration of hydrogen ions H+ \tn % Row Count 11 (+ 4) % Row 3 \SetRowColor{white} Arrhenius Base & Chemical compound that increases the concentration of hydroxide ions OH- \tn % Row Count 15 (+ 4) % Row 4 \SetRowColor{LightBackground} Strong Acid & Ionizes completely in an aqueous solution \tn % Row Count 17 (+ 2) % Row 5 \SetRowColor{white} Weak Acid & Releases few hydrogen ions in an aqueous solution \tn % Row Count 20 (+ 3) % Row 6 \SetRowColor{LightBackground} Bronsted-Lowrey Acid & Molecule or ion that is a proton donor \tn % Row Count 22 (+ 2) % Row 7 \SetRowColor{white} Bronsted-Lowrey Base & Molecule or ion that is a proton acceptor \tn % Row Count 24 (+ 2) % Row 8 \SetRowColor{LightBackground} Bronsted-Lowrey Acid-Base Reaction & Protons are transferred from an acid to a base \tn % Row Count 27 (+ 3) % Row 9 \SetRowColor{white} Monoprotic Acid & Acid that can donate only one proton per molecule \tn % Row Count 30 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{2.28942 cm} x{2.68758 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Vocab (cont)}} \tn % Row 10 \SetRowColor{LightBackground} Polyprotic Acid & Acid that can donate more that one proton per molecule \tn % Row Count 3 (+ 3) % Row 11 \SetRowColor{white} Diprotic Acid & Acid that can donate two protons per molecule \tn % Row Count 6 (+ 3) % Row 12 \SetRowColor{LightBackground} Triprotic Acid & Acid that can donate three protons per molecule \tn % Row Count 9 (+ 3) % Row 13 \SetRowColor{white} Lewis Acid & Atom, ion, or molecule that accepts an electron pair to form a covalent bond \tn % Row Count 13 (+ 4) % Row 14 \SetRowColor{LightBackground} Lewis Base & Atom, ion, or molecule that donates an electron pair to form a covalent bond \tn % Row Count 17 (+ 4) % Row 15 \SetRowColor{white} Lewis Acid-Base Reaction & Formation of one or more covalent bonds between an electron-pair donor and an electron-pair acceptor \tn % Row Count 22 (+ 5) % Row 16 \SetRowColor{LightBackground} Conjugate Base & Substance that is left after an acid has given up a proton \tn % Row Count 25 (+ 3) % Row 17 \SetRowColor{white} Conjugate Acid & The acid that is formed after a base accepts a proton \tn % Row Count 28 (+ 3) % Row 18 \SetRowColor{LightBackground} Amphoteric & Any substance that can act as an acid or a base \tn % Row Count 31 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{2.28942 cm} x{2.68758 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Vocab (cont)}} \tn % Row 19 \SetRowColor{LightBackground} Salt & Ionic compount composed of a cation from a base and an anion from an acid \tn % Row Count 4 (+ 4) % Row 20 \SetRowColor{white} Neutralization & The reaction of hydronium ions and hydroxide ions to form water molecules and salts \tn % Row Count 8 (+ 4) % Row 21 \SetRowColor{LightBackground} Self-Ionization of Water & Two water molecules produce a hydronium ion and a hydroxide ion by transfer of a proton \tn % Row Count 13 (+ 5) % Row 22 \SetRowColor{white} pH & The negative of the common log of the hydronium ion concentration \tn % Row Count 17 (+ 4) % Row 23 \SetRowColor{LightBackground} pOH & The negative of the compound log of the hydroxide ion concentration \tn % Row Count 21 (+ 4) % Row 24 \SetRowColor{white} Acid-Base Indicators & Compounds whose colors are sensitive to pH \tn % Row Count 23 (+ 2) % Row 25 \SetRowColor{LightBackground} Transition Intervals & The pH range over which an indicator changes color \tn % Row Count 26 (+ 3) % Row 26 \SetRowColor{white} pH Meter & Determines the pH of a solution by measuring the voltage between the two electrodes that are placed in the solution \tn % Row Count 32 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{2.28942 cm} x{2.68758 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Vocab (cont)}} \tn % Row 27 \SetRowColor{LightBackground} Titration & Controlled addition and measurement of the amount of a solution of known concentration required to react completely with a measured amount of a solution of unknown concentration \tn % Row Count 9 (+ 9) % Row 28 \SetRowColor{white} Equivalence Point & The point at which the two solutions used in a titration are present chemically equivalent amounts \tn % Row Count 14 (+ 5) % Row 29 \SetRowColor{LightBackground} End Point & The point in a titration at which an indicator changes color \tn % Row Count 17 (+ 3) % Row 30 \SetRowColor{white} Standard Solution & Solution that contains the precisely known concentration of a solute \tn % Row Count 21 (+ 4) % Row 31 \SetRowColor{LightBackground} Primary Standard & highly purified solid compound used to check the concentration of the known solution in a titration \tn % Row Count 26 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Properties of Acids and Bases}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Acids have a sour taste and react with active metals. Acids change the colors of acid-base indicators, react with bases to produce salts and water, and conduct electricity in aqueous solutions.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Bases have a bitter taste, feel slippery to the skin in dilute aqueous solutions, change colors of acid-base indicators, react with acids to produce salts and water, and conduct electricity in aqueous solutions.} \tn % Row Count 9 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{An arrhenius acid contains hydrogen and ionizes in aqueous solution to form hydrogen ions. An Arrhenius base produces hydroxide ions in aqueous solution.} \tn % Row Count 13 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The strength of an Arrhenius acid or base is determined by the extent to which the acid or base ionizes or dissociates in aqueous solutions.} \tn % Row Count 16 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Acid-Base Theories}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{A Bronsted-Lowry acid is a proton donor. A Bronsted-Lowry base is a proton acceptor.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{A Lewis acid is an electron-pair acceptor. A Lewis base is an electron-pair donor.} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Acids are described as monoprotic, diprotic, or triprotic depending on whether they can donate one, two, or three protons per molecule, respectively, in aqueous solutions. Polyprotic acids include both diprotic and triprotic acids.} \tn % Row Count 9 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Aqueous Solutions and the Concept of pH}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Pure water undergoes self-ionization to give 1.0x10\textasciicircum{}-7 M H30+ and 1.0x10\textasciicircum{}-7 M OH- at 25C} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{pH=-log{[}H3o+{]}; at 25C, pH+pOH=14} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{At 25C, acids have a pH of less than 7, bases have a pH of greater than 7, and neutral solutions have a pH of 7.} \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{If a solution contains a strong acid or a strong base, the {[}H3O+{]} and the {[}OH-\}, and the pH can be calculated from the molarity of the solution. If a solution contains a weak acid or a weak base, the {[}H3O+{]} and the {[}OH-{]} must be calculated from an experimentally measured pH.} \tn % Row Count 12 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Acid-Base Reactions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{A Bronsted-Lowry acid-base reaction, there are two conjugate acid-base pairs.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{A strong acid has a weak conjugate base; a strong base has a weak conjugate acid.} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Proton-transfer reactions favor the production of the weaker acid and weaker base.} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The acidic or basic behavior of a molecule containing -OH groups depends on the electronegativity of other atoms in the molecule and on the number of oxygen atoms bonded to the atom that is connected to the -OH group.} \tn % Row Count 11 (+ 5) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{A neutralization reaction produces water and an ionic compound called a salt.} \tn % Row Count 13 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Acid rain can create severe ecological problems} \tn % Row Count 14 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}