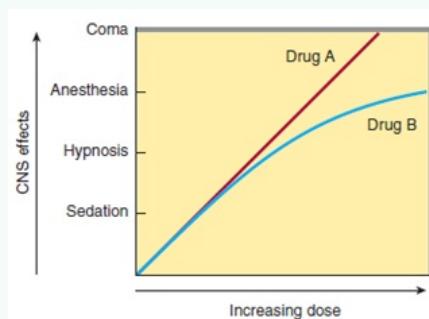
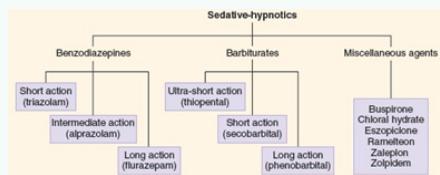


### Introduction:


**Sedation:** Reduction of anxiety

**Hypnosis:** Induction of sleep


**Sedative:** Synonym=anxiolytic, Reduces anxiety and has a calming effect

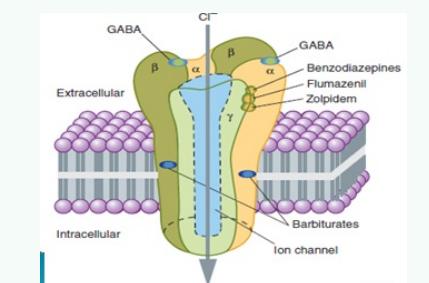
**Hypnotic:** Produces drowsiness, Induces and maintains sleep

### Dose-Responsive Curve for S-H Agents:



### Classification:




### Benzodiazepines:

>**Short-acting:** Triazolam

>**Intermediate-acting:** alprazolam, lorazepam, oxazepam, temazepam

>**Long acting:** pentobarbital, phenobarbital, secobarbital

### Mechanism of Action:



### MOA: Benzodiazepines

Receptors for BZ present = Thalamus, limbic structures, cerebral cortex

**BZ receptors =**

- > Part of GABA<sup>A</sup> receptor chloride ion channel macromolecular complex
- > Major GABA<sup>A</sup> receptor isoform
- > Five subunits:  $\alpha 1$ ,  $\beta 2$ , and  $\gamma 2$

Benzodiazepines bind between  $\alpha 1$  and  $\gamma 2$  subunits

Increase the **FREQUENCY** of GABA-mediated chloride ion opening

### MOA: Barbiturates:

> Depress neural activity in midbrain reticular formation

> Bind to  $\alpha$  and  $\beta$  subunits of the GABA<sup>A</sup> receptor

> Prolong the action of GABA and glycine

Increase the **DURATION** of GABA-mediated chloride ion channel opening

> may also block glutamate receptors and sodium channels at higher doses

### MOA: Other Agents:

Zolpidem, Zaleplon, Eszopiclone = **not** Benzodiazepines

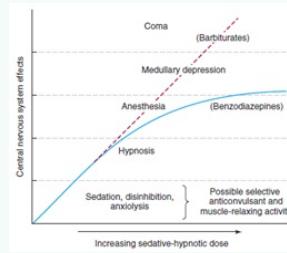
> Bind to benzodiazepine receptor (BZ1 or  $\omega 1$ )

More selective to GABA<sup>A</sup> isoforms that contain  $\alpha 1$  subunits

- Fewer adverse effects than benzodiazepines

- Minimal effects on sleep patterns, less likely to cause dependence

> Increase the **FREQUENCY** of GABA-mediated chloride ion opening


### Effects:

**Sedation** Anticonvulsant actions

**Hypnosis** Muscle relaxation Psychological dependence - Compulsive use

**Anaesthesia** Medullary depression Physiological dependence - withdrawal symptoms if drug is discontinued

### CNS Effects:



### Clinical Uses:

> Anxiety states

> Sleep disorders

> Anesthesia

> Epilepsy

> Alcohol withdrawal state

### Adverse Effects:

**Psychomotor dysfunction:** Cognitive impairment, decreased psychomotor skills, daytime sedation

**Additive CNS depression:** Alcohol, antihistamines, antipsychotic agents, opioids, tricyclic antidepressants

**Overdose:** CVS and respiratory depression, Antidote: Flumazenil

Sponsored by [ApolloPad.com](https://apollopad.com)

Everyone has a novel in them. Finish Yours!

<https://apollopad.com>

### Pharmacokinetics:

- > Most are lipid soluble, absorbed well from GIT
- > May cross the placental barrier during pregnancy - may depressed neonatal vital functions
- > Detectable in breast milk - may exert depressant effects in nursing infant
- > Metabolism by hepatic enzymes - renal function = no significant effect on elimination

### Pharmacokinetics:

#### Benzodiazepines:

- Converted to active metabolites with long half-lives
- Potential for accumulation
- Lorazepam and oxazepam do not form active metabolites
- Metabolized mainly by CYP3A4

#### Barbiturates:

- Extensively metabolized
- Except pentobarbital
- Excreted partly unchanged in urine

**Zolpidem:** No active metabolites

#### Drug Interactions:

- Inducers/inhibitors of CYP3A4 interact with sedative hypnotics
  - E.g. rifampicin (inducer), ketoconazole, cimetidine (inhibitors)
- Barbiturates induce metabolic enzymes

### Atypical Sedative-Hypnotics:

#### Buspirone:

- >Partial agonist at 5-HT<sup>1A</sup> receptors
- >Selective anxiolytic effects:
- Minimal CNS depressant effects = No anticonvulsant or muscle relaxation effect
- >Minimal tolerance, dependence, and abuse potential

#### Ramelteon, Tasimelteon:

- > Melatonin receptor agonists
- >Minimal rebound or withdrawal symptoms
- >Minimal abuse potential