

Oral Microbial Ecology Cheat Sheet by Carm (Carmilaa) via cheatography.com/49544/cs/17013/

Oral Ecosystem:

- Specific microbial species demonstrating tropism for specific tissues
- Microbial interaction with each other as well as with the oral environment

Formation of an Ecosystem:

Indigenous	Most numerous,
Microbiota:	Compatible with host
Supplemental	Potentially pathogenic, Can
Microbiota:	become invasive
Transient	Don't have mechanisms for
Microbiota:	persisting in the host

Oral Ecosystems:

Buccal epithelium:	Gram-positive cocci
Lingual epithelium:	Gram-positive filaments
Supragingival tooth surface:	Faculative G+ rods and cocci
Subgingival tooth surface:	Anaerobic G- rods and cocci

Microenvironments:

Supragingival:

- -Bathed in saliva
- -Faculatively anaerobic
- Increased mechanical disruption (swallowing, abrasion)

Subgingival:

- -Bathed in crevicular fluid
- -Anaerobic
- -Reduced mechanical disruption (anatomy of gingival sulcus)

Environmental Factors:

Oxygen	pO2, partial pressure of
tension:	oxygen, mmHg
Redox	Eh, tendency to acquire
Potential:	electrons and thus be reduced,
	mV

By Carm (Carmilaa) cheatography.com/carmilaa/

Environmental Factors: (cont)

pH:	controlled by exogenous
	materials carbohydrate
	fermentation buffering capacity
	of plaque and saliva

Temper- variations ature:

Availa- carbohydrates, amino acids bility of (salivary glycoproteins), hemin Nutrients: (plasma)

Host Fluids:

Antagonists	
-------------	--

Syriergistic.	Nutrients from Saliva and
	GCF
slgA:	Interferes with colonisation

- 3	
Glycoprot-	Aggregation and removal
eins:	

Lactopero-	Inactivation of glycolytic
xidase:	enzymes - death
Lactoferrin:	Binds iron limiting bacterial

growth

Lysozyme: Degrades bacterial peptid-

L**ysozyme:** Degrades bacteriai peptid odlycan

Host Susceptibility:

- Geographic location
- Ethnicity and culture
- Diet
- Health and social status

Microbial Factors:

Adherence:

- Contact: proximity
- Dose: quantity of bacteria
- Frequency of exposure (eg newborns)
- Absorption: initial reversible association with oral tissues

Retention:

- Ability to accumulate at entry site
- Adaption
- Resist host defenses
- Competition from other species
- Changing environments

Published 10th September, 2018. Last updated 10th September, 2018. Page 1 of 1.

Co-Aggregation:

Different species, or different strains of a single species, have distinct sets of coaggregation partners

Streptococcus spp. and Actinomyces spp., two of initial colonizing general on enamel surfaces

Fusobacbacteria coaggregate w/ other human oral bacteria

Veillonella spp., Capnocytophaga spp. bind to streptococci/ actinomyces

Each coaggregation is mediated by one or more complementary sets of adhesin-receptor pairs

Coaggregation:

Fig. 7. Model depicting *Prevotella loescheii* PK1295 (red cells) acting as a coaggregation bridge between two non coaggregating cell types, *Actinomyces israelii* ATCC 10048 (blue cells) and *Streptococcus oralis* 34 (purple cells).

CoAggregation Competition:

- Competition occurs when multiple cell types recognize the same coggregation indicator mediator on the common coaggregation partner

Ecological Succession:

Process by whereby a microbial population undergoes a continuous series of changes in composition as different species colonise and become established at the expense of others.

As conditions change, the dominant m/o's will either adapt and be retained or will be superseded by a new species better equipped to survive the altered environment.

Sponsored by Readable.com Measure your website readability! https://readable.com

