Cheatography

by via

Specialized Streams
IntStream for int elements
DoubleStream for double elements

LongStream for long elements

It has better performance to use these specialized streams when
using numeric data types, because there is no boxing/unboxing

Suppress elements
limit .limit(5)
will limit the result to the first 5 elements
skip .skip(5)
will skip the first 5 elements
fiter .filter(e -> e.getSalary() > 200000)
will keep the elements that satisfy the given predicate. In this
case, all elements that have salary above 200000

Comparing elements

distinct .distinct ()
will compare the elements in the stream using equals() and
eliminate duplicates

sorted .sorted((el, e2) -> el.getName () .compareT—
o(e2.getName ()))
will sort the elements with the given comparator. Elements
must be Comparable.

min Similar to sorted, but it will find the min element according
to the given comparator

max Similar to sorted, but it will find the max element according

to the given comparator

Apply a function to each element

map .map (employeeRepository: :findById)
will apply the given function and substitute the
elements in the stream for new elements. In this
case, it received a stream of employee IDs and
returned a stream of Employee objects

mapToDouble similar to map, but the function converts the

mapTolnt element to the specified primitive type, resulting in
mapTolLong a specialized stream IntStream, DoubleStream or
LongStream
By carlmig

Page 1 of 2.

Published 2nd September, 2020.
Last updated 30th August, 2018.

Apply a function to each element (cont)

flatMap similar to map, but the number of elements resulting may
be different. It's normally used to convert a List of List into
a single list with all the elements

peek .peek (e -> e.salaryIncrement (10.0))
will apply the give function to all elements in the list, but
doesn't substitute the elements in the list

Reduce elements to single value

reduce .reduce (0.0, Double: :sum)

will return a single value. It starts with the identity value
(0.0) and applies the given function to each element in
the array. In this case it's summing all elements, one

by one

allMatch .allMatch(i -> 1 % 2 == 0);
will check if all elements match the given condition. If

so, returns true, else returns false

anyMatch .anyMatch(i -> i % 2 == 0);
will check if one of the elements match the given

condition. If so, returns true, else returns false

noneMatch .noneMatch(i -> i % 2 == 0);
will check if no elements match the given condition. If

so, returns true, else returns false

findFirst .findFirst ()
will return an Optional with the first element in the

stream

forEach forEach(e -> e.salaryIncrement (10.0))
will apply the given function to each element in the
stream, but it's a terminal operation and returns void
count .count ()

outputs the number of elements in the stream

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

http://www.cheatography.com/
http://www.cheatography.com/carlmig/
http://www.cheatography.com/carlmig/cheat-sheets/java-8-streams
http://www.cheatography.com/carlmig/
https://apollopad.com

Cheatography

by via

Collect elements

toList

toSet

toColl-
ection

joining

collect (Collectors.toList())
gather all elements in the stream into a List

collect (Collectors.toSet())

gather all elements in the stream into a Set

collect (Collectors.toCollection (Vec—
tor: :new))

gather all elements in the list in an arbitrary Collection

collect(Collectors.joining (", ")) .toS-—
tring()

will join String elements with the given separator and
return the aggregated String

summarizingDouble

summaryStatistics

partition-

ingBy

groupingBy

mapping

reducing

.collect(Collectors.partitioningBy (s ->
s.getGrade () >= PASS_THRESHOLD))

will partition the data into 2 categories based on the
given condition. The result will be a Map<Boolean,
List<Student> >

.collect(Collectors.groupingBy (Employe—
e::getDepartment)) ;

will group the elements into categories based on the
function. The result will be a Map<Department, List<E-
mployee> >

mapping (Person: :getLastName, toSet())

it receives a function to be applied to all elements and
way of collecting downstream the elements. In this
case, it will get the last name of all persons and add
them to a set

By carlmig Published 2nd September, 2020.
Last updated 30th August, 2018.

Page 2 of 2.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

http://www.cheatography.com/
http://www.cheatography.com/carlmig/
http://www.cheatography.com/carlmig/cheat-sheets/java-8-streams
http://www.cheatography.com/carlmig/
https://apollopad.com

	Java 8 Streams Cheat Sheet - Page 1
	Specia­lized Streams
	Suppress elements
	Reduce elements to single value
	Comparing elements
	Apply a function to each element

	Java 8 Streams Cheat Sheet - Page 2
	Collect elements

