
Java 8 Streams Cheat Sheet
by carlmig via cheatography.com/67226/cs/16854/

Specialized StreamsSpecialized Streams

IntStream for int elements

DoubleStream for double elements

LongStream for long elements

It has better performance to use these specialized streams when
using numeric data types, because there is no boxing/unboxing

Suppress elementsSuppress elements

limit .limit(5)
will limit the result to the first 5 elements

skip .skip(5)
will skip the first 5 elements

filter .filter(e -> e.getSalary() > 200000)
will keep the elements that satisfy the given predicate. In this
case, all elements that have salary above 200000

Comparing elementsComparing elements

distinct .distinct()
will compare the elements in the stream using equals() and eliminate
duplicates

sorted .sorted((e1, e2) -> e1.getName().compareTo(e2.get
Name()))
will sort the elements with the given comparator. Elements must be Compar‐
able.

min Similar to sorted, but it will find the min element according to the given
comparator

max Similar to sorted, but it will find the max element according to the given
comparator

Apply a function to each elementApply a function to each element

map .map(employeeRepository::find
ById)
will apply the given function and substitute the
elements in the stream for new elements. In this
case, it received a stream of employee IDs and
returned a stream of Employee objects

mapToDouble
mapToInt
mapToLong

similar to map, but the function converts the
element to the specified primitive type, resulting in
a specialized stream IntStream, DoubleStream or
LongStream

Apply a function to each element (cont)Apply a function to each element (cont)

flatMap similar to map, but the number of elements resulting may
be different. It's normally used to convert a List of List into
a single list with all the elements

peek .peek(e -> e.salaryIncrement(10.0))
will apply the give function to all elements in the list, but
doesn't substitute the elements in the list

Reduce elements to single valueReduce elements to single value

reduce .reduce(0.0, Double::sum)
will return a single value. It starts with the identity value
(0.0) and applies the given function to each element in
the array. In this case it's summing all elements, one
by one

allMatch .allMatch(i -> i % 2 == 0);
will check if all elements match the given condition. If
so, returns true, else returns false

anyMatch .anyMatch(i -> i % 2 == 0);
will check if one of the elements match the given
condition. If so, returns true, else returns false

noneMatch .noneMatch(i -> i % 2 == 0);
will check if no elements match the given condition. If
so, returns true, else returns false

findFirst .findFirst()
will return an Optional with the first element in the
stream

forEach forEach(e -> e.salaryIncrement(10.0
))
will apply the given function to each element in the
stream, but it's a terminal operation and returns void

count .count()
outputs the number of elements in the stream

By carlmigcarlmig
cheatography.com/carlmig/

Published 2nd September, 2020.
Last updated 30th August, 2018.
Page 1 of 2.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/carlmig/
http://www.cheatography.com/carlmig/cheat-sheets/java-8-streams
http://www.cheatography.com/carlmig/
https://apollopad.com

Java 8 Streams Cheat Sheet
by carlmig via cheatography.com/67226/cs/16854/

Collect elementsCollect elements

toList collect(Collectors.toList())
gather all elements in the stream into a List

toSet collect(Collectors.toSet())
gather all elements in the stream into a Set

toColl‐
ection

collect(Collectors.toCollection(Vector::new))
gather all elements in the list in an arbitrary Collection

joining collect(Collectors.joining(", ")).toString()
will join String elements with the given separator and return the aggregated String

summarizingDouble

summaryStatistics

partition‐
ingBy

.collect(Collectors.partitioningBy(s -> s.getGrade() >= PASS_T‐
HRESHOLD))
will partition the data into 2 categories based on the given condition. The result will be a Map<Bo‐
olean, List<Student>>

groupingBy .collect(Collectors.groupingBy(Employee::getDepartment));
will group the elements into categories based on the function. The result will be a Map<Depar‐
tment, List<Employee>>

mapping mapping(Person::getLastName, toSet())
it receives a function to be applied to all elements and way of collecting downstream the elements.
In this case, it will get the last name of all persons and add them to a set

reducing

By carlmigcarlmig
cheatography.com/carlmig/

Published 2nd September, 2020.
Last updated 30th August, 2018.
Page 2 of 2.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/carlmig/
http://www.cheatography.com/carlmig/cheat-sheets/java-8-streams
http://www.cheatography.com/carlmig/
https://apollopad.com

	Java 8 Streams Cheat Sheet - Page 1
	Specialized Streams
	Suppress elements
	Reduce elements to single value
	Comparing elements
	Apply a function to each element

	Java 8 Streams Cheat Sheet - Page 2
	Collect elements

