
Java 8 Streams Cheat Sheet
by carlmig via cheatography.com/67226/cs/16854/

Specia lized Streams

IntStream for int elements

Double Stream for double elements

LongStream for long elements

It has better perfor mance to use these specia lized streams when
using numeric data types, because there is no boxing /un boxing

Suppress elements

limit .limit(5)

will limit the result to the first 5 elements

skip .skip(5)

will skip the first 5 elements

filter .filter(e -> e.getS alary() > 200000)
will keep the elements that satisfy the given predicate. In this
case, all elements that have salary above 200000

Comparing elements

distinct .dist inct()
will compare the elements in the stream using equals() and
eliminate duplicates

sorted .sort ed((e1, e2) -> e1.get Nam e().co mpa reT ‐
o(e 2.g etN ame ()))
will sort the elements with the given compar ator. Elements
must be Compar able.

min Similar to sorted, but it will find the min element according
to the given comparator

max Similar to sorted, but it will find the max element according
to the given comparator

Apply a function to each element

map .map(employeeRepository::findById)

will apply the given function and substitute the
elements in the stream for new elements. In this
case, it received a stream of employee IDs and
returned a stream of Employee objects

mapToDouble
mapToInt
mapToLong

similar to map, but the function converts the
element to the specified primitive type, resulting in
a specia lized stream IntStream, Double Stream or
LongStream

Apply a function to each element (cont)

flatMap similar to map, but the number of elements resulting may
be different. It's normally used to convert a List of List into
a single list with all the elements

peek .peek(e -> e.sala ryI ncr eme nt(10.0))
will apply the give function to all elements in the list, but
doesn't substitute the elements in the list

Reduce elements to single value

reduce .redu ce(0.0, Double ::sum)
will return a single value. It starts with the identity value
(0.0) and applies the given function to each element in
the array. In this case it's summing all elements, one
by one

allMatch .allM atch(i -> i % 2 == 0);
will check if all elements match the given condition. If
so, returns true, else returns false

anyMatch .anyM atch(i -> i % 2 == 0);
will check if one of the elements match the given
condition. If so, returns true, else returns false

noneMatch .none Match(i -> i % 2 == 0);
will check if no elements match the given condition. If
so, returns true, else returns false

findFirst .find Fir st()
will return an Optional with the first element in the
stream

forEach forEach(e -> e.sala ryI ncr eme nt(10.0))
will apply the given function to each element in the
stream, but it's a terminal operation and returns void

count .count()
outputs the number of elements in the stream

By carlmig
cheatography.com/carlmig/

Published 2nd September, 2020.
Last updated 30th August, 2018.
Page 1 of 2.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/carlmig/
http://www.cheatography.com/carlmig/cheat-sheets/java-8-streams
http://www.cheatography.com/carlmig/
https://apollopad.com

Java 8 Streams Cheat Sheet
by carlmig via cheatography.com/67226/cs/16854/

Collect elements

toList colle ct(Col lec tor s.t oLi st())
gather all elements in the stream into a List

toSet colle ct(Col lec tor s.t oSe t())
gather all elements in the stream into a Set

toColl ‐
ection

colle ct(Col lec tor s.t oCo lle cti on(Vec ‐
tor ::n ew))
gather all elements in the list in an arbitrary Collection

joining colle ct(Col lec tor s.j oin ing (", ")).t oS ‐
tri ng()
will join String elements with the given separator and
return the aggregated String

summar izi ngD ouble

summar ySt ati stics

partit ion ‐
ingBy

.coll ect (Co lle cto rs.p ar tit ion ingBy(s ->
s.getG rade() >= PASS_T HRE SHO LD))
will partition the data into 2 categories based on the
given condition. The result will be a Map<Bo olean,
List<S tud ent >>

groupingBy .coll ect (Co lle cto rs.g ro upi ngB y(E mpl oye ‐
e:: get Dep art men t));
will group the elements into categories based on the
function. The result will be a Map<De par tment, List<E ‐
mpl oye e>>

mapping mappi ng(Per son ::g etL ast Name, toSet())
it receives a function to be applied to all elements and
way of collecting downstream the elements. In this
case, it will get the last name of all persons and add
them to a set

reducing

By carlmig
cheatography.com/carlmig/

Published 2nd September, 2020.
Last updated 30th August, 2018.
Page 2 of 2.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/carlmig/
http://www.cheatography.com/carlmig/cheat-sheets/java-8-streams
http://www.cheatography.com/carlmig/
https://apollopad.com

	Java 8 Streams Cheat Sheet - Page 1
	Specialized Streams
	Suppress elements
	Reduce elements to single value
	Comparing elements
	Apply a function to each element

	Java 8 Streams Cheat Sheet - Page 2
	Collect elements

