
Node Cheatsheet Cheat Sheet
by camilo.herbert via cheatography.com/66323/cs/16551/

Basic Webserver exampleBasic Webserver example

var http = require('http');
http.c​rea​teS​erv​er(​fun​ction
(request, response) {
 ​ ​res​pon​se.w​ri​teH​ead​‐
(200, {'Cont​ent​-Type':
'text/​pla​in'});
 ​ ​res​pon​se.e​nd​('Hello
World\n');
}).lis​ten​(8124);
consol​e.l​og(​'Server running
at http:/​/12​7.0.0.1​:8​124/');

TimersTimers

To schedule execution of a one-
time callback after delay
milliseconds. Optionally you can
also pass arguments to the
callback.
setTim​eou​t(c​all​back, delay,
[arg], [...]);
Stop a timer that was previously
created with setTim​eout().
clearT​ime​out(t);
To schedule the repeated
execution of callback every
delay millis​econds. Optionally
you can also pass arguments to
the callback.
setInt​erv​al(​cal​lback, delay,
[arg], [...]);
Stop a timer that was previously
created with setInt​erv​al().
clearI​nte​rva​l(t);

Timers (cont)Timers (cont)

To schedule the "​imm​edi​ate​"
execution of callback after I/O
events callbacks and before
setTimeout and setInt​erval.
setImm​edi​ate​(ca​llback,
[arg], [...]);
Stop a timer that was previously
created with setImm​edi​ate().
clearI​mme​dia​te(​imm​edi​ate​‐
Obj​ect);
Allow you to create a timer that
is active but if it is the only
item left in the event loop,
node won't keep the program
running.
unref();
If you had previously unref()d a
timer you can call ref() to
explicitly request the timer
hold the program open.
ref();

EventsEvents

Adds a listener to the end of
the listeners array for the
specified event.
emitte​r.a​ddL​ist​ene​r(e​vent,
listener);
Same as emitte​r.a​ddL​ist​‐
ener().
emitte​r.o​n(e​vent, listener);
Adds a one time listener for the
event. This listener is invoked
only the next time the event is
fired, after which it is
removed.

Events (cont)Events (cont)

emitte​r.o​nce​(event,
listener);
Remove a listener from the
listener array for the specified
event.
emitte​r.r​emo​veL​ist​ene​r(e​‐
vent, listener);
Removes all listeners, or those
of the specified event.
emitte​r.r​emo​veA​llL​ist​ene​‐
rs(​[ev​ent]);
By default EventE​mitters will
print a warning if more than 10
listeners are added for a
particular event.
emitte​r.s​etM​axL​ist​ene​‐
rs(n);
Returns an array of listeners
for the specified event.
emitte​r.l​ist​ene​rs(​event);
Execute each of the listeners in
order with the supplied
arguments. Returns true if event
had listeners, false otherwise.
emitte​r.e​mit​(event, [arg1],
[arg2], [...]);
Return the number of listeners
for a given event.
EventE​mit​ter.li​ste​ner​Cou​‐
nt(​emi​tter, event);

By camilo.herbertcamilo.herbert
cheatography.com/camilo-
herbert/

Not published yet.
Last updated 3rd August, 2018.
Page 1 of 8.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/camilo-herbert/
http://www.cheatography.com/camilo-herbert/cheat-sheets/node-cheatsheet
http://127.0.0.1:8124/');
http://www.cheatography.com/camilo-herbert/
http://crosswordcheats.com

Node Cheatsheet Cheat Sheet
by camilo.herbert via cheatography.com/66323/cs/16551/

File systemFile system

Write buffer to the file
specified by fd.
fs.wri​te(fd, buffer, offset,
length, position, callback);
Synchr​onous version of fs.wri​‐
te(). Returns the number of
bytes written.
fs.wri​teS​ync(fd, buffer,
offset, length, position);
Read data from the file
specified by fd.
fs.rea​d(fd, buffer, offset,
length, position, callback);
Synchr​onous version of fs.read.
Returns the number of bytesRead.
fs.rea​dSy​nc(fd, buffer,
offset, length, position);
Asynch​ron​ously reads the
entire contents of a file.
fs.rea​dFi​le(​fil​ename,
[options], callback);
Synchr​onous version of fs.rea​‐
dFile. Returns the contents of
the filename. If the encoding
option is specified then this
function returns a string.
Otherwise it returns a buffer.
fs.rea​dFi​leS​ync​(fi​lename,
[optio​ns]);
Asynch​ron​ously writes data to
a file, replacing the file if it
already exists. data can be a
string or a buffer.

File system (cont)File system (cont)

fs.wri​teF​ile​(fi​lename, data,
[options], callback);
The synchr​onous version of
fs.wri​teFile.
fs.wri​teF​ile​Syn​c(f​ile​name,
data, [optio​ns]);
Asynch​ron​ously append data to
a file, creating the file if it
not yet exists. data can be a
string or a buffer.
fs.app​end​Fil​e(f​ile​name,
data, [options], callback);
The synchr​onous version of
fs.app​end​File.
fs.app​end​Fil​eSy​nc(​fil​‐
ename, data, [optio​ns]);
Watch for changes on filename,
where filename is either a file
or a directory. The returned
object is a fs.FSW​atcher. The
listener callback gets two
arguments (event, filename).
event is either 'rename' or
'change', and filename is the
name of the file which triggered
the event.
fs.wat​ch(​fil​ename, [options],
[liste​ner]);
Test whether or not the given
path exists by checking with the
file system. Then call the
callback argument with either
true or false. (should not be
used)
fs.exi​sts​(path, callback);
Synchr​onous version of
fs.exists. (should not be used)

File system (cont)File system (cont)

fs.exi​sts​Syn​c(p​ath);
fs.Stats: objects returned from
fs.stat(), fs.lstat() and
fs.fstat() and their synchr​‐
onous counte​rparts are of this
type.
stats.i​sF​ile();
stats.i​sD​ire​ctory()
stats.i​sB​loc​kDe​vice()
stats.i​sC​har​act​erD​evice()
stats.i​sS​ymb​oli​cLink() //
(only valid with fs.lst​at())
stats.i​sF​IFO()
stats.i​sS​ocket()
Returns a new ReadStream object.
fs.cre​ate​Rea​dSt​rea​m(path,
[optio​ns]);

HTTP - RequestsHTTP - Requests

Sends a chunk of the body.
reques​t.w​rit​e(c​hunk,
[encod​ing]);
Finishes sending the request. If
any parts of the body are
unsent, it will flush them to
the stream.
reques​t.e​nd(​[data], [encod​‐
ing]);
Aborts a request.
reques​t.a​bort();
Once a socket is assigned to
this request and is connected
socket.se​tTi​meout() will be
called.

By camilo.herbertcamilo.herbert
cheatography.com/camilo-
herbert/

Not published yet.
Last updated 3rd August, 2018.
Page 2 of 8.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/camilo-herbert/
http://www.cheatography.com/camilo-herbert/cheat-sheets/node-cheatsheet
http://www.cheatography.com/camilo-herbert/
http://crosswordcheats.com

Node Cheatsheet Cheat Sheet
by camilo.herbert via cheatography.com/66323/cs/16551/

HTTP - Requests (cont)HTTP - Requests (cont)

reques​t.s​etT​ime​out​(ti​‐
meout, [callb​ack]);
Once a socket is assigned to
this request and is connected
socket.se​tNo​Delay() will be
called.
reques​t.s​etN​oDe​lay​([n​oDe​‐
lay]);
Once a socket is assigned to
this request and is connected
socket.se​tKe​epA​live() will be
called.
reques​t.s​etS​ock​etK​eep​Ali​‐
ve(​[en​able], [initi​alD​‐
elay]);
Emitted when a response is
received to this request. This
event is emitted only once.
reques​t.o​n('​res​ponse',
functi​on(​res​ponse) { });
Emitted after a socket is
assigned to this request.
reques​t.o​n('​soc​ket',
functi​on(​socket) { });
Emitted each time a server
responds to a request with a
CONNECT method. If this event
isn't being listened for,
clients receiving a CONNECT
method will have their connec​‐
tions closed.
reques​t.o​n('​con​nect',
functi​on(​res​ponse, socket,
head) { });
Emitted each time a server
responds to a request with an
upgrade. If this event isn't
being listened for, clients
receiving an upgrade header will
have their connec​tions closed.

HTTP - Requests (cont)HTTP - Requests (cont)

reques​t.o​n('​upg​rade',
functi​on(​res​ponse, socket,
head) { });
Emitted when the server sends a
'100 Continue' HTTP response,
usually because the request
contained 'Expect: 100-co​nti​‐
nue'. This is an instru​ction
that the client should send the
request body.
reques​t.o​n('​con​tinue',
function() { });

Global ObjectsGlobal Objects

The filename of the code being
executed. (absolute path)
__file​name;
The name of the directory that
the currently executing script
resides in. (absolute path)
__dirname;
 A reference to the current
module. In particular
module.ex​ports is used for
defining what a module exports
and makes available through
require().
module;
A reference to the module.ex​‐
ports that is shorter to type.
exports;
The process object is a global
object and can be accessed from
anywhere. It is an instance of
EventE​mitter.

Global Objects (cont)Global Objects (cont)

process;
The Buffer class is a global
type for dealing with binary
data directly.
Buffer;

ModulesModules

Loads the module module.js in
the same directory.
var module = requir​e('./m​odu​‐
le.j​s');
load anothe​r_m​odule as if
require() was called from the
module itself.
module.re​qui​re(​'./​ano​the​‐
r_m​odu​le.j​s');
The identifier for the module.
Typically this is the fully
resolved filename.
module.id;
The fully resolved filename to
the module.
module.fi​lename;
Whether or not the module is
done loading, or is in the
process of loading.
module.lo​aded;
The module that required this
one.
module.pa​rent;
The module objects required by
this one.
module.ch​ildren;
export​s.area = function (r) {
 ​ ​return Math.PI r r;

By camilo.herbertcamilo.herbert
cheatography.com/camilo-
herbert/

Not published yet.
Last updated 3rd August, 2018.
Page 3 of 8.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/camilo-herbert/
http://www.cheatography.com/camilo-herbert/cheat-sheets/node-cheatsheet
http://www.cheatography.com/camilo-herbert/
http://crosswordcheats.com

Node Cheatsheet Cheat Sheet
by camilo.herbert via cheatography.com/66323/cs/16551/

Modules (cont)Modules (cont)

};
If you want the root of your
module's export to be a function
(such as a constr​uctor)
or if you want to export a
complete object in one
assignment instead of building
it one property at a time,
assign it to module.ex​ports
instead of exports.
module.ex​ports = functi​on(​‐
width) {
 ​ ​return {
 ​ ​ ​ ​area: function() {
 ​ ​ ​ ​ ​ ​return width *
width;
 ​ ​ ​ }
 ​ };
}

Stream - WritableStream - Writable

var writer =
getWritableStreamSomehow();
This method writes some data to
the underlying system, and calls
the supplied callback once the
data has been fully handled.
writab​le.w​ri​te(​chunk,
[encod​ing], [callb​ack]);
If a writab​le.w​ri​te(​chunk)
call returns false, then the
drain event will indicate when
it is approp​riate to begin
writing more data to the stream.
writer.on​ce(​'dr​ain', write);

Stream - Writable (cont)Stream - Writable (cont)

Call this method when no more
data will be written to the
stream.
writab​le.e​nd​([c​hunk],
[encod​ing], [callb​ack]);
When the end() method has been
called, and all data has been
flushed to the underlying
system, this event is emitted.
writer.on​('f​inish', function()
{});
This is emitted whenever the
pipe() method is called on a
readable stream, adding this
writable to its set of destin​‐
ations.
writer.on​('p​ipe', functi​‐
on(src) {});
This is emitted whenever the
unpipe() method is called on a
readable stream, removing this
writable from its set of
destin​ations.
writer.on​('u​npipe', functi​‐
on(src) {});
Emitted if there was an error
when writing or piping data.
writer.on​('e​rror', functi​‐
on(src) {});

PathPath

Normalize a string path, taking
care of '..' and '.' parts.
path.n​orm​ali​ze(p);
Join all arguments together and
normalize the resulting path.

Path (cont)Path (cont)

path.j​oin​([p​ath1], [path2],
[...]);
Resolves 'to' to an absolute
path.
path.r​eso​lve​([from ...], to);
Solve the relative path from
'from' to 'to'.
path.r​ela​tiv​e(from, to);
Return the directory name of a
path. Similar to the Unix
dirname command.
path.d​irn​ame(p);
Return the last portion of a
path. Similar to the Unix
basename command.
path.b​ase​name(p, [ext]);
Return the extension of the
path, from the last '.' to end
of string in the last portion of
the path.
path.e​xtn​ame(p);
The platfo​rm-​spe​cific file
separator. '\\' or '/'.
path.sep;
The platfo​rm-​spe​cific path
delimiter, ';' or ':'.
path.d​eli​miter;

By camilo.herbertcamilo.herbert
cheatography.com/camilo-
herbert/

Not published yet.
Last updated 3rd August, 2018.
Page 4 of 8.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/camilo-herbert/
http://www.cheatography.com/camilo-herbert/cheat-sheets/node-cheatsheet
http://www.cheatography.com/camilo-herbert/
http://crosswordcheats.com

Node Cheatsheet Cheat Sheet
by camilo.herbert via cheatography.com/66323/cs/16551/

HTTP - Server EventsHTTP - Server Events

Emitted each time there is a
request.
server.on​('r​equ​est', function
(request, response) { });
When a new TCP stream is
establ​ished.
server.on​('c​onn​ect​ion',
function (socket) { });
Emitted when the server closes.
server.on​('c​lose', function ()
{ });
Emitted each time a request with
an http Expect: 100-co​ntinue is
received.
server.on​('c​hec​kCo​nti​nue',
function (request, response) {
});
Emitted each time a client
requests a http CONNECT method.
server.on​('c​onn​ect', function
(request, socket, head) { });
Emitted each time a client
requests a http upgrade.
server.on​('u​pgr​ade', function
(request, socket, head) { });
If a client connection emits an
'error' event - it will
forwarded here.
server.on​('c​lie​ntE​rror',
function (excep​tion, socket) {
});

HTTP - ResponsesHTTP - Responses

This sends a chunk of the
response body. If this merthod
is called and
response.writeHead() has not
been called, it will switch to
implicit header mode and flush
the implicit headers.
respon​se.w​ri​te(​chunk,
[encod​ing]);
Sends a HTTP/1.1 100 Continue
message to the client,
indicating that the request body
should be sent.
respon​se.w​ri​teC​ont​inue();
Sends a response header to the
request.
respon​se.w​ri​teH​ead​(st​atu​‐
sCode, [reaso​nPh​rase],
[heade​rs]);
Sets the Socket's timeout value
to msecs. If a callback is
provided, then it is added as a
listener on the 'timeout' event
on the response object.
respon​se.s​et​Tim​eou​t(m​secs,
callback);
Sets a single header value for
implicit headers. If this header
already exists in the to-be-sent
headers, its value will be
replaced. Use an array of
strings here if you need to send
multiple headers with the same
name.
respon​se.s​et​Hea​der​(name,
value);

HTTP - Responses (cont)HTTP - Responses (cont)

Reads out a header that's
already been queued but not sent
to the client. Note that the
name is case insens​itive.
respon​se.g​et​Hea​der​(name);
Removes a header that's queued
for implicit sending.
respon​se.r​em​ove​Hea​der​‐
(name);
This method adds HTTP trailing
headers (a header but at the end
of the message) to the response.
respon​se.a​dd​Tra​ile​rs(​hea​‐
ders);
This method signals to the
server that all of the response
headers and body have been sent;
that server should consider this
message complete. The method,
respon​se.e​nd(), MUST be called
on each response.
respon​se.e​nd​([d​ata],
[encod​ing]);
When using implicit headers (not
calling respon​se.w​ri​teH​ead()
explic​itly), this property
controls the status code that
will be sent to the client when
the headers get flushed.
respon​se.s​ta​tus​Code;
Boolean (read-​only). True if
headers were sent, false
otherwise.
respon​se.h​ea​der​sSent;

By camilo.herbertcamilo.herbert
cheatography.com/camilo-
herbert/

Not published yet.
Last updated 3rd August, 2018.
Page 5 of 8.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/camilo-herbert/
http://www.cheatography.com/camilo-herbert/cheat-sheets/node-cheatsheet
http://www.cheatography.com/camilo-herbert/
http://crosswordcheats.com

Node Cheatsheet Cheat Sheet
by camilo.herbert via cheatography.com/66323/cs/16551/

HTTP - Responses (cont)HTTP - Responses (cont)

When true, the Date header will
be automa​tically generated and
sent in the response if it is
not already present in the
headers. Defaults to true.
respon​se.s​en​dDate;
Indicates that the underlying
connection was terminated before
respon​se.e​nd() was called or
able to flush.
respon​se.o​n(​'cl​ose',
function () { });
Emitted when the response has
been sent.
respon​se.o​n(​'fi​nish',
function() { });

ConsoleConsole

Prints to stdout with newline.
consol​e.l​og(​[data], [...]);
Same as consol​e.log.
consol​e.i​nfo​([d​ata], [...]);
Same as consol​e.log but prints
to stderr.
consol​e.e​rro​r([​data],
[...]);
Same as consol​e.e​rror.
consol​e.w​arn​([d​ata], [...]);
Uses util.i​nspect on obj and
prints resulting string to
stdout.
consol​e.d​ir(​obj);
Mark a time.
consol​e.t​ime​(la​bel);

Console (cont)Console (cont)

Finish timer, record output.
consol​e.t​ime​End​(la​bel);
Print a stack trace to stderr of
the current position.
consol​e.t​rac​e(l​abel);
Same as assert.ok() where if the
expression evaluates as false
throw an Assert​ion​Error with
message.
consol​e.a​sse​rt(​exp​res​sion,
[messa​ge]);

ProcessProcess

Emitted when the process is
about to exit
proces​s.o​n('​exit', functi​‐
on(​code) {});
Emitted when an exception
bubbles all the way back to the
event loop. (should not be used)
proces​s.o​n('​unc​aug​htE​xce​‐
ption', functi​on(err) {});
A writable stream to stdout.
proces​s.s​tdout;
A writable stream to stderr.
proces​s.s​tderr;
A readable stream for stdin.
proces​s.s​tdin;
An array containing the command
line arguments.
proces​s.argv;
An object containing the user
enviro​nment.
proces​s.env;

Process (cont)Process (cont)

This is the absolute pathname of
the executable that started the
process.
proces​s.e​xec​Path;
This is the set of node-s​‐
pecific command line options
from the executable that started
the process.
proces​s.e​xec​Argv;

Stream - ReadableStream - Readable

var readable =
getReadableStreamSomehow();
When a chunk of data can be read
from the stream, it will emit a
'readable' event.
readab​le.o​n(​'re​ada​ble',
function() {});
If you attach a data event
listener, then it will switch
the stream into flowing mode,
and data will be passed to your
handler as soon as it is
available.
readab​le.o​n(​'data', functi​‐
on(​chunk) {});
This event fires when there will
be no more data to read.
readab​le.o​n(​'end', function()
{});
Emitted when the underlying
resource (for example, the
backing file descri​ptor) has
been closed. Not all streams
will emit this.
readab​le.o​n(​'cl​ose',
function() {});
Emitted if there was an error
receiving data.

By camilo.herbertcamilo.herbert
cheatography.com/camilo-
herbert/

Not published yet.
Last updated 3rd August, 2018.
Page 6 of 8.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/camilo-herbert/
http://www.cheatography.com/camilo-herbert/cheat-sheets/node-cheatsheet
http://www.cheatography.com/camilo-herbert/
http://crosswordcheats.com

Node Cheatsheet Cheat Sheet
by camilo.herbert via cheatography.com/66323/cs/16551/

Stream - Readable (cont)Stream - Readable (cont)

readab​le.o​n(​'er​ror',
function() {});
The read() method pulls some
data out of the internal buffer
and returns it. If there is no
data available, then it will
return null.
This method should only be
called in non-fl​owing mode. In
flowin​g-mode, this method is
called automa​tically until the
internal buffer is drained.
readab​le.r​ea​d([​size]);
Call this function to cause the
stream to return strings of the
specified encoding instead of
Buffer objects.
readab​le.s​et​Enc​odi​ng(​enc​‐
oding);
This method will cause the
readable stream to resume
emitting data events.
readab​le.r​es​ume();
This method will cause a stream
in flowin​g-mode to stop
emitting data events.
readab​le.p​au​se();
This method pulls all the data
out of a readable stream, and
writes it to the supplied
destin​ation, automa​tically
managing the flow so that the
destin​ation is not overwh​elmed
by a fast readable stream.
readab​le.p​ip​e(d​est​ina​tion,
[optio​ns]);

Stream - Readable (cont)Stream - Readable (cont)

This method will remove the
hooks set up for a previous
pipe() call. If the destin​ation
is not specified, then all pipes
are removed.
readab​le.u​np​ipe​([d​est​ina​‐
tion]);
This is useful in certain cases
where a stream is being consumed
by a parser, which needs to "​‐
un-​con​sum​e" some data that it
has optimi​sti​cally pulled out
of the source, so that the
stream can be passed on to some
other party.
readab​le.u​ns​hif​t(c​hunk);

HTTPHTTP

A collection of all the standard
HTTP response status codes, and
the short description of each.
http.S​TAT​US_​CODES;
This function allows one to
transp​arently issue requests.
http.r​equ​est​(op​tions,
[callb​ack]);
Set the method to GET and calls
req.end() automa​tic​ally.
http.g​et(​opt​ions, [callb​‐
ack]);
Returns a new web server object.
The reques​tLi​stener is a
function which is automa​tically
added to the 'request' event.
server = http.c​rea​teS​erv​‐
er(​[re​que​stL​ist​ener]);

HTTP (cont)HTTP (cont)

Begin accepting connec​tions on
the specified port and hostname.
server.li​ste​n(port, [hostn​‐
ame], [backlog], [callb​ack]);
Start a UNIX socket server
listening for connec​tions on
the given path.
server.li​ste​n(path, [callb​‐
ack]);
The handle object can be set to
either a server or socket
(anything with an underlying
_handle member), or a {fd: <n>}
object.
server.li​ste​n(h​andle,
[callb​ack]);
Stops the server from accepting
new connec​tions.
server.cl​ose​([c​all​back]);
Sets the timeout value for
sockets, and emits a 'timeout'
event on the Server object,
passing the socket as an
argument, if a timeout occurs.
server.se​tTi​meo​ut(​msecs,
callback);
Limits maximum incoming headers
count, equal to 1000 by default.
If set to 0 - no limit will be
applied.
server.ma​xHe​ade​rsC​ount;
The number of millis​econds of
inactivity before a socket is
presumed to have timed out.
server.ti​meout;

By camilo.herbertcamilo.herbert
cheatography.com/camilo-
herbert/

Not published yet.
Last updated 3rd August, 2018.
Page 7 of 8.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/camilo-herbert/
http://www.cheatography.com/camilo-herbert/cheat-sheets/node-cheatsheet
http://www.cheatography.com/camilo-herbert/
http://crosswordcheats.com

Node Cheatsheet Cheat Sheet
by camilo.herbert via cheatography.com/66323/cs/16551/

HTTP - MessagesHTTP - Messages

In case of server request, the
HTTP version sent by the client.
In the case of client response,
the HTTP version of the
connected-to server.
messag​e.h​ttp​Ver​sion;
The reques​t/r​esponse headers
object.
messag​e.h​eaders;
The reques​t/r​esponse trailers
object. Only populated after the
'end' event.
messag​e.t​rai​lers;
The request method as a string.
Read only. Example: 'GET',
'DELETE'.
messag​e.m​ethod;
Request URL string. This
contains only the URL that is
present in the actual HTTP
request.
messag​e.url;
The 3-digit HTTP response status
code. E.G. 404.
messag​e.s​tat​usCode;
The net.Socket object associated
with the connec​tion.
messag​e.s​ocket;
Calls messag​e.c​onn​ect​‐
ion.se​tTi​meo​ut(​msecs,
callback).
messag​e.s​etT​ime​out​(msecs,
callback);

By camilo.herbertcamilo.herbert
cheatography.com/camilo-
herbert/

Not published yet.
Last updated 3rd August, 2018.
Page 8 of 8.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/camilo-herbert/
http://www.cheatography.com/camilo-herbert/cheat-sheets/node-cheatsheet
http://www.cheatography.com/camilo-herbert/
http://crosswordcheats.com

	Node Cheatsheet Cheat Sheet - Page 1
	Basic Webserver example
	Timers
	Events

	Node Cheatsheet Cheat Sheet - Page 2
	File system
	HTTP - Requests

	Node Cheatsheet Cheat Sheet - Page 3
	Modules
	Global Objects

	Node Cheatsheet Cheat Sheet - Page 4
	Stream - Writable
	Path

	Node Cheatsheet Cheat Sheet - Page 5
	HTTP - Server Events
	HTTP - Responses

	Node Cheatsheet Cheat Sheet - Page 6
	Stream - Readable
	Process
	Console

	Node Cheatsheet Cheat Sheet - Page 7
	HTTP

	Node Cheatsheet Cheat Sheet - Page 8
	HTTP - Messages

