

GCSE Physics equations Cheat Sheet

by caitlin.eliz via cheatography.com/173374/cs/36428/

P1 - energy		P2 - electric	city (cont)	P5 - forces a	nd motion (cont)	P7 - magnetism and electroma-		
K.E = 1/2 mv ²	Kinetic energy = $1/2 x$ mass x (velocity) ²	E = QV	Energy = charge flow x potential difference	s=ut+1/2 at ²	Distance = (initial velocity x time) + (1/2 x accele-	gnetism F=BII	Force on a conductor (at rio	ght
EPE = 1/2 ke ²	Elastic potential energy = 1/2 x spring constant x (exten- sion) ²	E = Pt	Energy transf- erred = power x time	W=mg	ration x time ²) Weight = mass x gravitational field strength		angles to a magnetic field) carrying a curre magnetic flux	right it) rrent: ent x ent x imary s in ii ii x s f f f f f f
GPE = mgh	Gravitational potential energy = mass x gravity x height	RT = R1+R2+- R3	Series circuit total resistance	F=ma	Newton's 2nd: Force = mass x acceleration	Vp/Vs=	density x currer length PD across prim	
TE = mCΔT	Thermal energy = mass x specific heat capacity x change in	1/RT= 1/R2+ 1/R2+ 1/R3	Parallel circuit total resistance	F=ke	Force = spring constant x extension	np/ns	coil/ PD across secondary coil of turns in prima coil/ no of coils	= nº ary
C = E/mΔT	temp. Specific heat capacity = energy / mass x	P3 - particle ρ=m/V	e model of matter Density = mass/	EPE=1/2 Fe	Elastic potential energy = 1/2 x Force x extension	Vplp=Vsls	secondary coil PD across prim coil x current	ary
	change in temp.	E=mL	Volume Energy for a change	Moment- um=mv	Momentum = mass x velocity		across primary = PD across	coil
WD =	total energy input) x100 Work done = Force x distance		of state = mass x specific latent heat of fusion OR vapori-	F=(Δmo- mentum)/ t	Force = change in momentum/ time		secondary coil of current across secondary coil	Κ
P2 - ele	ctricity	PV =	sation For gases: pressure	Momentum b	pefore = momentum	SI units and	symbols	
	Power = energy transf- erred/ time	constant P=F/A	x volume = constant Pressure = force /		cance = thinking	Acceleration	m/s ²	a
	Power = work done/ time		area	s=1/2 mv ² /F	Braking distance = kinetic energy/	Area Magnetic flu density		
	Power = (potential difference) ² / resistance	v=s/t	and motion Speed = distance/ time	Moment=Fs	Force Moment = Force	Specific hea	t J/kg ^o C	(
P =	Power = current x potential difference	v=(v+u)/2 x t	Average speed = (final speed +	D 5/4	x distance from pivot	Extension	Metres (m)	E
P =	Power = $(current)^2 x$	X	initial speed)/2 x time	P = F/A	Pressure = Force/ Area	Energy	Joules (J)	E
Q =	resistance Charge flow = current x time	a=Δv/ t	Acceleration = change in velocity/	P = hpg	Pressure in a fluid = height x density x gravity	Frequency	Hertz (Hz)	f
V =	Potential difference = current x resistance	v=u+at	time Velocity = initial	P6 - waves		Force	Newtons (N)	F
E= E	Energy = current x time x potential difference	v ² =u ² +2as	velocity + (acceleration x time) (Final velocity) ² = (initial velocity) ² + (2 x acceleration x distance)	v=f\(\text{Velocity} = \text{frequency x} \\ \text{wavelength} \end{array}		Gravitationa field strength	Ü	ę
					od = 1/frequency	Height	Metres (m)	ł
				Speed of light	- 0/10 111/9	Current	Amps (A)	I

By caitlin.eliz

cheatography.com/caitlin-eliz/

Not published yet. Last updated 8th January, 2023. Page 1 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

GCSE Physics equations Cheat Sheet by caitlin.eliz via cheatography.com/173374/cs/36428/

SI units and s	:)	SI units and symbols (conf)	
Spring constant	Newtons per metre (N/m OR Nm ⁻¹)	k	Activit	ty	Becqu	ierels (B	q)
Length	m	I					
Specific latent heat	J/kg	L					
Mass	Kilograms (kg)	m					
Moment	Nm	Moment	t				
Momentum	kgm/s	Moment OR mv	tum				
Pressure	N/m ²	Р					
Power	Watts (W)	Р					
Charge	Coulombs (C)	Q					
Resistance	Ohms (Ω)	R					
Displa- cement/ distance	Metres (m)	S					
Time	Seconds (s)	t					
Half-life		t1/2					
Period	S	Т					
Temper- ature	Degrees celcius (°C)	Т					
Velocity/ speed	Metres per second (m/s OR ms ⁻¹)	V					
Volume	m^3	V					
Potential difference	Volts (V)	V					
Work done	Nm OR J	WD					
Weight	Newtons (N)	W OR n	ng				
Change in		Δ					
Wavelength	m	λ					
Density	kg/m ³	ρ					

