Basics

There are a number of operators that can be used to extract subsets of \mathbf{R} objects.

* [- always returns an object of the same class as the original; can be used to select more than on elements (there is one exception)
* [[- is used to extract elements of a list or a data frame; it can only be used to extract a single element and the class of the returned object will not necessarily be a list or data frame * \$ - is used to extract elements of a list or data frame by name, semantics are similar to hat of II.
x <- c("a","b","c", "c","d","a") * character vector called x
* $>$ x[1]
* [1] "a"
* $>x$ [2]
* [1] "b"
* $>x[1: 4]$
* [1] "a" "b" "c" "c"
$x[x>$ "a"] \# subset that gets every element greater than "a"
[1] "b" "c" "c" "d"
$\mathrm{u}\langle-\mathrm{x}>$ "a" \# create a logical vector called "u"
$>u$
[1] FALSE TRUE TRUE TRUE TRUE FALSE
$\mathbf{x}[\mathrm{u}]$ \# subet the vector " x " with this u vector and get out all elements that are greater than "a"
[1] "b" "c" "c" "d"

Basics (cont)

So in conclusion there are 2 types of indices that where used above

* the first type with the numeric index
* the second type was the logical index

Removing missing values

A common task is to remove missing values (NAS)
create a logical vector which tells you where the NA's are so you can remove them
$>x<-c(1,2, N A, 4, N A, 5)$ * here we have a vector x
$>$ bad <- is.na(x) * tell me which elements are na and stores the in the bad vector
> x[!bad] * give me the elements that are NOT missing or NA
[1] 1245
What if there are multiple things and you want to take the subset with no missing values?
$>x<-c(1,2, N A, 4, N A, 5)$
> y <-c("a","b", NA, "d", NA, "f")
$>$ good <- complete.cases (x, y)
$>$ good
[1] TRUE TRUE FALSE TRUE FALSE TRUE
> x [good] * subset x
[1] 1245
$>$ y[good] * subset y
[1] "a" "b" "d" "f"

Lists

The nice thing about being able to subset an element using its name is that you don't have to remember where it is in the list
$>x<-\operatorname{list}(f o o=1: 4$, bar $=0.6) \#$ list of 2
elements foo and bar
$>x$
\$foo
[1] 1234
\$bar
[1] 0.6

By bwaldo

cheatography.com/bwaldo/

Published 27th February, 2017.
Last updated 27th February, 2017.
Page 1 of 2 .

Lists (cont)	
	$>\mathrm{x}[1]^{*}$ list that contained the sequence 1 thru 4 \$foo [1] 1234
	> x[[1]] \# just the sequence [1] 1234
	$>x \$$ bar \# give me the element that is associated with the name bar [1] 0.6
	> x[["bar"]] [1] 0.6
	if you want to extract multiple elements of a list then you need to use the single bracket $>x<- \text { list(foo = 1:4, bar = 0.6, baz = "hello") }$ $>x[c(1,3)]$ \# give me the 1st and 3rd element of the vector x \$foo [1] 1234 \$baz

[[to index a list where the index itself was computed
$>x<-$ list(foo = 1:4, bar = 0.6, baz = "hello")
$>$ name <- "foo"
$>x[[n a m e]]$ * computed index for 'foo'
[1] 1234
$>x$ x 3 name * element 'name' doesn't exist
NULL
$>x \$ f o o ~ * ~ e l e m e n t ~ ' f o o ' ~ d o e s ~ e x i s t ~$
[1] 1234

The [[indicator can take an interger sequence
$>\mathrm{x}<-\operatorname{list}(\mathrm{a}=\operatorname{list}(10,12,14), \mathrm{b}=\mathrm{c}(3.14,2.81))$
*I want to exract 14 , that is really the 3rd element of the 1st element so its the 3rd element of the list which happens to be the first element of the other list.
$>x[[c(1,3)]]$
[1] 14
> $x[[1]][[3]]$
[1] 14
$>x[[c(2,1)]]$ * extract the first element of the second element by passing the vector 2,1
[1] 3.14

[^0]
R - Subsetting Cheat Sheet

Matrices

Matrices can be subsetted in the usual way with (i,j) type indices
$>x$ <- matrix $(1: 6,2,3)$ \# create a 2×3 matrix with the number sequence of 1 thru 6 > $x[1,2]$ \# give me the first row and second column
[1] 3
> $x[2,1]$
[1] 2
Indices can also be missing
$>x[1$,$] * i want the entire first row$
[1] 135
> x[,2] *i want just the second column
[1] 34
By default, when a single element of a matrix is retrieved, it is returned as a vector of length 1 rather than a 1×1 matrix. This behavior can be turned off by setting drop = FALSE.
> $\mathrm{x}<-$ matrix $(1: 6,2,3)$
$>x[1,2]$
[1] 3
$>x[1,2$, drop $=$ FALSE] * this preserves the dimension of the object
[,1]
[1,] 3
Similarly, subsetting a single column or a single row will give you a vector, not a matrix (by default)
$>x<-$ matrix $(1: 6,2,3)$
$>x[1$,
[1] 135
> $\mathrm{x}[1$,,drop=FALSE]
[,1] [,2] [,3]
[1,] 135

By bwaldo

cheatography.com/bwaldo/

Partial Matching

Partial matching of names is allowed with [[and \$.
$>x<-$ list(aardvark $=1: 5$) \# create a list x which as the element aardvark that is a seq 1 thru 5
$>x \$ a$ * instead of typing aardvark everytime, search for a name in the list that matches 'a'
[1] 12345
> x[["a"]] * the [[expects a name with an exact match, so no partial matching
NULL
> x[["a", exact = FALSE]] * specify exact = FALSE then the return will be below.
[1] 12345

Vectorized operations

Many operations in \mathbf{R} are vectorized making code more efficient, concise, and easier to read
$>x<-1: 4 ; y<-6: 9$ * 2 vectors
$>x+y$ * add the 1 st element of x to the 1 st
element of 2 etc ($1+6,2+7$ etc)
[1] 791113
> x > 2 [1] FALSE FALSE TRUE TRUE
$>x>=2$
[1] FALSE TRUE TRUE TRUE
> $y==8$
[1] FALSE FALSE TRUE FALSE
$>x$ * y
[1] 6142436
$>x / y$
[1] 0.16666670 .28571430 .3750000
0.4444444

Similary you can do the same with matrices $>x<-$ matrix $(1: 4,2,2) ; y<-$ matrix $(r e p(10,4), 2$, 2)

* x is a matrix 1 thru 4 so its a 2×2 matrix
* y is a matrix of all 10 's its also a $2 x 2$ matrix

Published 27th February, 2017.
Last updated 27th February, 2017.
Page 2 of 2 .

Vectorized operations (cont)
> $x y^{*}$ element-wise multiplication
[,1] [,2]
[1,] 1030
[2,] 2040
$>x / y$
[,1] [,2]
[1,] 0.10 .3
[2,] 0.20 .4
> $x \% \% \mathrm{y}$ * true matrix multiplication
[,1] [,2]
[1,] 4040
[2,] 6060

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

[^0]: Sponsored by Readability-Score.com
 Measure your website readability!
 https://readability-score.com

