
R Basics Cheat Sheet
by bwaldo via cheatography.com/35095/cs/11018/

R Objects and Attributes

Vectors

The c() function can be used to create
vectors of objects

x <- c(0.5, 0.6) ## numeric

x <- c(TRUE, FALSE) ## logical

x <- c(T, F) ## logical

x <- c("a " ,"b", " c") ## character

x <- 9:29 ## interger

x <- c(l+0i, 2+4i) ## complex

Using the vector() function

> x <- vector ("nu mer ic", length = 10)

When different objects are mixed in a vector,
coercion occurs so that every element in the
vector is of the same class

y <- c(1.7, " a") ## character

y <- c(TRUE, 2) ## numeric

y <- c("a ", TRUE) ## characte

Objects can be explicitly coerced from one
class to another using the " as.* " functions if
availa ble

> x <- 0:6 ## create a sequence of 0-6 >
class(x) ## class of the object [1] " int ege r"

Vectors (cont)

> as.num eric(x) ## change the class of the
object to numeric [1] 0 1 2 3 4 5 6

> as.log ical(x) ## change the class of the object
to logical [1] FALSE TRUE TRUE TRUE TRUE
TRUE TRUE

> as.cha rac ter(x) ## change the class of the
object to character [1] " 0" " 1" " 2" " 3" " 4" " 5" " 6"

> as.com plex(x) [1] 0+0i 1+0i 2+0i 3+0i 4+0i
5+0i 6+0i

Nons ensical coercion results in NA's

> x<- c("a " ,"b", " c") > as.num eric(x) [1] NA NA
NA Warning message: NAs introduced by
coercion

> as.log ical(x) [1] NA NA NA

> as.com plex(x) [1] NA NA NA

Reading Tabular Data

read.t able, read.csv * Tabular data
readLines * Reading lines of a text file
source * Reading in R code files (inverser of
dump)
dget * Reading in R code files (inverse of dput)
load * Reading in saved workspaces
unseri alize * Reading in single R objects in
binary form

Analogous functions for WRITING data to files

Reading Tabular Data (cont)

write.t ab le(), writeL ines(), dump(), dput(),
save(), serial ize()

The read.table function is one of the most
commonly used functions for reading data.
Below are a few argume nts

file * the name of a file or a connection header *
logical indicating if the file has a header line
sep * a string indicating how the columns are
separated colClasses * a character verctor
indicating the class of each column in the
dataset nrows * the number of rows in the
dataset commen t.char * a character string
indicating the comment character skip * the
number of lines to skip from the beginning
string sAs Factors * should character variables
be coded as factors? defaults to true

For small to moderatly sized datasets you
can call read.table without specifying any
other argume nts.

data <- read.t abl e("s ome tab le.t xt ") * R will
automatically
* skips lines that being with a "#"
* figure out how many rows there are (and how
much memory needs to be allocated)
* figure what type of variable is in each column
of hte table telling R all these things
* directly makes R run faster and more
efficiently.
* read.csv is idental to read.table EXCEPT that
the default separator is a comma (,)

By bwaldo
cheatography.com/bwaldo/

Published 27th February, 2017.
Last updated 27th February, 2017.
Page 1 of 3.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/bwaldo/
http://www.cheatography.com/bwaldo/cheat-sheets/r-basics
http://www.cheatography.com/bwaldo/
https://readability-score.com

R Basics Cheat Sheet
by bwaldo via cheatography.com/35095/cs/11018/

Lists

Lists - Lists are a special type of vector that
can contain elements of different classes.
Lists are a very IMPORTANT data type in R.

> x <- list(1 ,"a", TRUE, 1 +4i) ##list function

> x [[1]] ##vector element 1 [1] 1 [[2]] ##vector
element 2 [1] " a" [[3]] ##vector element 3 [1]
TRUE [[4]] ##vector element 4 [1] 1+4i

Matrices

Matrices are vectors with a dimension
attribute. The dimension attribute is itself an
integer vector of length 2(nrow ,nc ol)

> m <- matrix (nrow = 2, ncol = 3) #matrix
function

> m [,1] [,2] [,3] [1,] NA NA NA [2,] NA NA NA

> dim(m) [1] 2 3

> attrib utes(m) $dim [1] 2 3

Matrices are constr ucted column -wise, so
entries can be thought of starting in the
" upper left" corner and running down the
columns

> m <- matrix (1:6, nrow = 2, ncol = 3) # create
a matrix with a sequence of 1-6

> m [,1] [,2] [,3] [1,] 1 3 5 [2,] 2 4 6

Matrices (cont)

Matrices can also be created directly form
vectors by adding a dimension attrib ute

> m <- 1:10 # create a vector that is a
sequence from 1-10 > m [1] 1 2 3 4 5 6 7 8 9 10

Adding the dim function but assigning and
attribute to m, take this vector and
transform it into a matrix that is 2 rows and
5 columns

> dim(m) <- c(2,5)

> m [,1] [,2] [,3] [,4] [,5] [1,] 1 3 5 7 9 [2,] 2 4 6 8
10

Matrices can be created by column -bi nding
cbind() or row-bi nding rbind()

> x<-1:3 > y<- 10:12 > cbind(x,y) x y [1,] 1 10
[2,] 2 11 [3,] 3 12 > rbind(x,y) [,1] [,2] [,3] x 1 2 3
y 10 11 12

Reading Large Tables

A quick and dirty way to figure out the
classes of each column is the follow ing: *
initial <- read.t abl e("d ata tab le.t xt ", nrows =
100)
* classes <- sapply (in itial, class)
* tabALL <- read.t abl e("d ata tab le.t xt ",
colClasses = classes)
* Set nrows. This doesn't make R run faster but
it helps with memory usage

Textual Data Formats

* dput(): writes R code to which can be used to
recons truct a R object.
* dget(): single R objects
* dump(): similar to dget but can be used on
multiple R objects.

dput() example
> y <- data.frame(a=1,b="a")
> dput(y) # output to console
struct ure (list(a = 1, b = struct ure(1L, .Label =
" a", class = "factor"))
, .Names = c("a ", " b"), row.names = c(NA, -1L),
class = "data.frame")
> dput(y, file ="y.R ") # save to a file named y.R
> new.y <- dget("y.R") # get the file
> new.y
a b
1 1 a

dump() example

> x <- "foo"

> y <- data.frame(a=1,b="a")

> dump(c ("x", " y"), file = " dat a.R ") # paSS the
objects x and y and create and store in data.R

> rm(x,y) # remove them from R

> source ("da ta.R ") # calls them back into R

> y

a b

1 1 a

> x

[1] "foo"

By bwaldo
cheatography.com/bwaldo/

Published 27th February, 2017.
Last updated 27th February, 2017.
Page 2 of 3.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/bwaldo/
http://www.cheatography.com/bwaldo/cheat-sheets/r-basics
http://www.cheatography.com/bwaldo/
https://readability-score.com

R Basics Cheat Sheet
by bwaldo via cheatography.com/35095/cs/11018/

Factors

Factors are used to represent catego rical
data and can be unordered or ordered. One
can think of a factor as an integer vector
where each integer has a label

> x <- factor (c(" yes " ,"ye s", " no" , " yes ", " no")) >
x [1] yes yes no yes no Levels: no yes

> table(x) ##if you table x then it will tell how
many of each value there are x no yes 2 3

> unclass(x) [1] 2 2 1 2 1 attr(, " lev els ") [1] " no"
" yes "

The order of the levels can be set using the
levels argument to factor(). This can be
important in linear modelling because the
first level is used as the baseline level

So in the example below we set the levels of c
because default would put no first and we want
yes first > x <- factor (c(" yes " ,"ye s", " no" , " yes ",
" no") ,levels = c("y es", " no")) > x [1] yes yes no
yes no Levels: yes no

Missing Values

Missing values are denoted by NA or NaN
for undefined mathem atical operat ions.

Missing Values (cont)

* is.na() is used to test objects if they are NA
* is.nan() is used to test for NaN
* NA values have a class also, so there are
interger NA, character NA etc
* a NaN value is also NA but the converse is
not true

> x <- c(1,2, NA, 10,3) > x [1] 1 2 NA 10 3

> is.na(x) [1] FALSE FALSE TRUE FALSE
FALSE

> is.nan(x) [1] FALSE FALSE FALSE FALSE
FALSE

> x <- c(1,2, NaN ,NA,4) > is.na(x) [1] FALSE
FALSE TRUE TRUE FALSE

> is.nan(x) [1] FALSE FALSE TRUE FALSE
FALSE

Names Attribute

R objects can also have names, which is
very useful for writing readable code and
self-d esc ribing objects

> x <- 1:3
> names(x)
NULL
> names(x) <-c("foo","bar","norf")
> x
foo bar norf
1 2 3
> names(x)
[1] " foo " " bar " "norf"

List can also have names

> x <- list(a=1,b=2,c=3)
> x
$a
[1] 1
$b
[1] 2
$c
[1] 3

Matrices can have names

Names Attribute (cont)

> m <- matrix (1:4, nrow=2, ncol=2) ## create a
matrix sequence 1-4
> dimnam es(m) <- list(c ("a", " b"), c("c","d"))
> m
c d
a 1 3
b 2 4

Data Frames

Data frames are used to store tabular data.
* They are repres ented as a special type of list
where every element of the list has to have the
same length.
* Each element of hte list can be thought of as
a column and the length of each element of the
list is the # or rows.
* Unlike matrices, data frames can store
different classes of objects in each column (just
like lists) matrices must have every element be
the same class.
* Data frames also have a special attribute
called row.names
* Data frames are usually created by calling
read.t able() or read.csv()
* Can be converted to a matrix by calling
data.matrix()

> x <- data.f ram e(foo = 1:4, bar = c(T,T,F,F))
> x
foo bar
1 1 TRUE
2 2 TRUE
3 3 FALSE
4 4 FALSE
> nrow(x)
[1] 4
> ncol(x)
[1] 2

By bwaldo
cheatography.com/bwaldo/

Published 27th February, 2017.
Last updated 27th February, 2017.
Page 3 of 3.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/bwaldo/
http://www.cheatography.com/bwaldo/cheat-sheets/r-basics
http://www.cheatography.com/bwaldo/
https://readability-score.com

	R Basics Cheat Sheet - Page 1
	R Objects and Attributes
	Vectors
	Reading Tabular Data

	R Basics Cheat Sheet - Page 2
	Lists
	Textual Data Formats
	Matrices
	Reading Large Tables

	R Basics Cheat Sheet - Page 3
	Factors
	Data Frames
	Names Attribute
	Missing Values

