\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{bsmith} \pdfinfo{ /Title (vibrations-rappel.pdf) /Creator (Cheatography) /Author (bsmith) /Subject (Vibrations Rappel Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{000000} \definecolor{LightBackground}{HTML}{F7F7F7} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Vibrations Rappel Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{bsmith} via \textcolor{DarkBackground}{\uline{cheatography.com/129311/cs/25555/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}bsmith \\ \uline{cheatography.com/bsmith} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 16th February, 2021.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{4} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Mouvements Périodiques}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Mouvements périodiques =\textgreater{} Mouvements sinusoïdales x=Acos(wt+α)} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Forme équation de mouvement : d$^{\textrm{2}}$x/dt$^{\textrm{2}}$ + w$^{\textrm{2}}$x=0 avec w=√(k/m)} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Superposition}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Fréquences égales : x = A cos(wt+φ) avec : A$^{\textrm{2}}$=(A1)$^{\textrm{2}}$+(A2)$^{\textrm{2}}$+2(A1)(A2)cos(φ2-φ1) et tg φ = (A1sinφ1 + A2sinφ2)/(A1cosφ1 + A2cosφ2)} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Battements : A1≠A2 \& f1≠f2 mais proches: f = | (w1-w2)/2π | = | f1 - f2 |} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Oscillations libres}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Eq diff du mvt : (1) d$^{\textrm{2}}$x/dt$^{\textrm{2}}$ + w$^{\textrm{2}}$x=0 \#Newton (2) E=1/2 m(dx/dt)$^{\textrm{2}}$ + 1/2 kx$^{\textrm{2}}$ \#Energie} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{MHS rectiligne = résultantes de 2 mvts circulaires réels et opposés de même module} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Courbe de Lissajous = mvt de 2 oscillations de même amplitude, rectilignes et perpendiculaires} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Objets flottants : md$^{\textrm{2}}$y/dt$^{\textrm{2}}$ = -ρgAy avec A:aire section droite de l'objet, y: déplacement =\textgreater{}w=√(ρgA/m)} \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Pendule : E = 1/2 m (dx/dt)$^{\textrm{2}}$ + (mg/2l)y$^{\textrm{2}}$ =\textgreater{} w=√(g/l)} \tn % Row Count 11 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Tube en U : E = 1/2 ρAl(dy/dt)$^{\textrm{2}}$ + gρAy$^{\textrm{2}}$ =\textgreater{} w$^{\textrm{2}}$=2g/l avec A: aire, l: long. tot. liquide, y: position surface du liquide \% position d'équilibre} \tn % Row Count 14 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{MHS amorti}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Force de frottements visqueux : F = -bv avec b=coeff de frottement} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Eq diff du mvt : md$^{\textrm{2}}$x/dt$^{\textrm{2}}$ + bdx/dt +kx=0 =\textgreater{} d$^{\textrm{2}}$x/dt$^{\textrm{2}}$ + b/m dx/dt + k/m x =0 =\textgreater{} wo$^{\textrm{2}}$=k/m ; γ=b/m =\textgreater{} pour tout le système : w = √(wo$^{\textrm{2}}$ - γ$^{\textrm{2}}$/4)} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Facteur de qlté : Q = wo/γ} \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Amplitude après n cycles : A(n) = Ao e\textasciicircum{}-nγ/2\textasciicircum{}} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Rapport des amplitudes après n cycles : An/Ao = exp(nπ/Q)} \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Oscillateurs couplés et modes normaux}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{1) Sys. d'eq. diff.\{\{nl\}\}2) Sol forme xn=Ane\textasciicircum{}jwt\textasciicircum{} `(initialement au repos)` xn=Ane\textasciicircum{}j(wt+αxn)\textasciicircum{} `(initialement en mouvement)`\{\{nl\}\}3)Sys. d'eq.\{\{nl\}\}4)Div par me\textasciicircum{}jwt\textasciicircum{}-\textgreater{}Matrice mode normaux\{\{nl\}\}5){[}wo$^{\textrm{2}}$,ws$^{\textrm{2}}$,w$^{\textrm{2}}${]}{[}A,B...{]}={[}0...0{]}\{\{nl\}\}6)Echelonner ou faire ▲=0 pour trouver w} \tn % Row Count 6 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{N.B. Prendre en compte la tension lors des calculs} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Ondes transversales}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Hypothèses : Fil uniforme de densité linéique 𝜌, Gravité négligeable, T tension constante dans le fil} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Equations d'onde : ∂$^{\textrm{2}}$y/∂x$^{\textrm{2}}$=(1/c$^{\textrm{2}}$)(∂$^{\textrm{2}}$y/∂t$^{\textrm{2}}$) \{\{nl\}\}=\textgreater{}Sol y=a sin(ω t -Φ)=a sin{[}2π/λ(ct-x){]} \{\{nl\}\} 2πc/λ=ω=2πv et Φ=2πx/λ\{\{nl\}\}c=λv} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Période des oscillations : λ /c=1/v=τ avec λ:long. d'onde} \tn % Row Count 9 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ct-x =\textgreater{} depl. vers la droite ct+x =\textgreater{} depl. vers la gauche} \tn % Row Count 11 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Expressions équivalentes : y=a sin{[}(2π/λ)(ct-x)=a sin 2π(vt-x/λ)=a sin ω(t-x/c)=a sin(ωt-kx)} \tn % Row Count 13 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Vitesse de phase ou vitesse d'onde :∂x/∂t} \tn % Row Count 14 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Vitesse d'un oscillateur : ∂y/∂t} \tn % Row Count 15 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Impédance : Z=Force transversale/vitesse transversale \{\{nl\}\}= F/v avec F=-T(∂y/∂x)} \tn % Row Count 17 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{\seqsplit{∂y/∂t=(-ω/k)(∂y/∂x)=(-∂x/∂t)(∂y/∂x)=-c∂y/∂x}} \tn % Row Count 19 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Déplacement de l'onde : {\bf{y}}={\bf{A}}e\textasciicircum{}j(ωt-kx)\textasciicircum{}} \tn % Row Count 20 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Impédance : Z=Force transversale/vitesse transversale \{\{nl\}\}= F/v avec F=-T(∂y/∂x)=jkT{\bf{A}}e\textasciicircum{}j(ωt-kx)\textasciicircum{}} \tn % Row Count 23 (+ 3) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{A}}=Fo/jkT=Fo/jω(c/T)} \tn % Row Count 24 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Oscillations forcées et résonance}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Mvt syst. = combinaison des oscillations de fréquences ω0 (fréquence naturelle) et ω (fréquence force)} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Intervalle de temps où les 2 types de vibration sont présentes = régime transitoire} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Oscillations forcées seules présentes = régime permanent} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Amplitude max =\textgreater{} ωo = ω} \tn % Row Count 8 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Oscillateur forcé non amorti : md\textasciicircum{}2\textasciicircum{}x/dt\textasciicircum{}2\textasciicircum{} + kx = F0cosωt} \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Oscillations forcées avec amortissement : d$^{\textrm{2}}$x/dt$^{\textrm{2}}$ + ɣ dx/dt + ωo$^{\textrm{2}}$ x = Fo/m cosωt} \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{1. Trouver eq de forme : md\textasciicircum{}2\textasciicircum{}x/dt\textasciicircum{}2\textasciicircum{} + kx = F0cos ωt \{\{nl\}\} 2. Solution : z=A e\textasciicircum{}j(ωt+α)\textasciicircum{}`(non amorti)` z =Ae\textasciicircum{}j(ωt-α)\textasciicircum{}`(amorti)`\{\{nl\}\}3. Regrouper termes semblables\{\{nl\}\}4. Décomposer e\textasciicircum{}ix\textasciicircum{} = cos x + i sin x \{\{nl\}\}5. Système d'eq par identification\{\{nl\}\}6. Résoudre pour A `(élever au carré,addition) et tg=sin/cos`} \tn % Row Count 19 (+ 7) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Fréquence max : ωm = ωo(1- 1/(2Q$^{\textrm{2}}$))\textasciicircum{}1/2\textasciicircum{}} \tn % Row Count 20 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Amplitude max : Am = Ao Q/(1- 1/(4Q$^{\textrm{2}}$))\textasciicircum{}1/2\textasciicircum{}} \tn % Row Count 21 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{P = dW/dt = F dx/dt = Fv avec F = F0 cos ωt et x= (Fo/m)cos(ωt) / (ωo$^{\textrm{2}}$-ω$^{\textrm{2}}$) = C cos ωt (non amorti) ou x=A cos(ωt – δ) (amorti)} \tn % Row Count 24 (+ 3) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Vitesse max =\textgreater{} ω = ω0 = résonnance de vitesse.} \tn % Row Count 25 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Puissance moyenne : P(ω) = (Fo$^{\textrm{2}}$ωo/2kQ)*{[}1/((ωo/ω - ω/ωo)$^{\textrm{2}}$+1/Q$^{\textrm{2}}$){]}} \tn % Row Count 27 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Puissance maximale : ω=ωo =\textgreater{} Pm = Fo$^{\textrm{2}}$ωoQ/2k ou QFo$^{\textrm{2}}$/2mωo} \tn % Row Count 29 (+ 2) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{ɣ=2▲ω=ωo/Q} \tn % Row Count 30 (+ 1) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Oscillations forcées et résonance (cont)}} \tn % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{E=Eoe\textasciicircum{}-ɣt\textasciicircum{}} \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Equation de d'Alembert-Lagrange}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Equation de Lagrange : d/dt(∂L/∂q'j) - ∂L/∂qj + ∂R/∂q'j = Qj (horizontal : qj=xj, vertical: qj=yj)} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{L = T -V avec T = ∑1/2 mα(vα)\textasciicircum{}2\textasciicircum{} et V=∑(Fi)(ri)} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Trouver l'équ. diff. du mvt à partir de l'éq. de Lagrange\{\{nl\}\}1. Chercher T et V pour trouver L. \{\{nl\}\}2. R = 0 (pas de frottement proportionnel à la vitesse) et Qj = 0 (pas de forces non conservatives)\{\{nl\}\}3. Plug in it epi lapè.} \tn % Row Count 10 (+ 5) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Trouver les modes normaux : Après avoir trouvé le syst. d'éq. diff., on met sous forme matricielle 𝐌𝐱" +𝐊𝐱=𝟎 et on résoud en prenant des solutions de la forme 𝐱(t)= {[}X1e\textasciicircum{}st\textasciicircum{} X2e\textasciicircum{}st\textasciicircum{}{]} On doit résoudre 𝐝𝐞𝐭( (𝐌\textasciicircum{}−1\textasciicircum{}𝐊) −λ𝐈 )=𝟎 pour trouver les valeurs propres λ. Ce qui donne des solutions de la forme 𝐱= 𝛟re\textasciicircum{}±jωrt\textasciicircum{} avec ωr= (λr)\textasciicircum{}1/2\textasciicircum{} et 𝛟r={[}a b{]} lorsqu'on resoud ( (𝐌\textasciicircum{}−1\textasciicircum{}𝐊) −λ𝐈 ){[}a b{]}={[}0 0{]}} \tn % Row Count 20 (+ 10) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Formulaire de Trigonométrie}} \tn % Row 0 \SetRowColor{LightBackground} cos(x + 2π) = cos x & sin(x + 2π) = sin x \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} cos(x + π) = − cos x & sin(x + π) = − sin x \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} cos(π/2 - x) = sin x & sin(π/2 - x) = cos x \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} cos(π/2 + x) = - sin x & sin(π/2 + x) = cos x \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} cos(a + b) = cos a cos b − sin a sin b & sin(a + b) = sin a cos b + sin b cos a \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} cos(a − b) = cos a cos b + sin a sin b & sin(a − b) = sin a cos b − sin b cos a \tn % Row Count 12 (+ 3) % Row 6 \SetRowColor{LightBackground} cos(2a) = cos\textasciicircum{}2\textasciicircum{} a − sin\textasciicircum{}2\textasciicircum{} a & sin(2a) = 2 sin a cos a \tn % Row Count 14 (+ 2) % Row 7 \SetRowColor{white} cos a cos b = 1/2 (cos(a − b) + cos(a + b)) & sin a sin b = 1/2 (cos(a + b) - cos(a - b)) \tn % Row Count 17 (+ 3) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{3.833cm}}{sin a cos b =1/2 (sin(a + b) + sin(a − b))} \tn % Row Count 18 (+ 1) % Row 9 \SetRowColor{white} cos\textasciicircum{}2\textasciicircum{} a =1/2 (1 + cos(2a)) & sin\textasciicircum{}2\textasciicircum{} a =1/2 (1 − cos(2a)) \tn % Row Count 20 (+ 2) % Row 10 \SetRowColor{LightBackground} cos p + cos q = 2 \seqsplit{cos((p+q)/2)cos((p-q)/2)} & sin p + sin q = 2 \seqsplit{sin((p+q)/2)cos((p-q)/2)} \tn % Row Count 23 (+ 3) % Row 11 \SetRowColor{white} cos p - cos q = - 2 \seqsplit{cos((p+q)/2)cos((p-q)/2)} & sin p - sin q = -2 \seqsplit{cos((p+q)/2)sin((p-q)/2)} \tn % Row Count 26 (+ 3) % Row 12 \SetRowColor{LightBackground} 1 + cos x = 2 cos\textasciicircum{}2\textasciicircum{}x/2 & 1 − cos x = 2 sin\textasciicircum{}2\textasciicircum{}x/2 \tn % Row Count 28 (+ 2) % Row 13 \SetRowColor{white} cos x = cos a ⇔ x = a + 2kπ ou x = -a + 2kπ & sin x = sin a ⇔ x = a + 2kπ ou x = π − a + 2kπ \tn % Row Count 31 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Formulaire de Trigonométrie (cont)}} \tn % Row 14 \SetRowColor{LightBackground} e\textasciicircum{}ix\textasciicircum{} + e\textasciicircum{}−ix\textasciicircum{} = 2 cos x & e\textasciicircum{}ix\textasciicircum{} − e\textasciicircum{}−ix\textasciicircum{} = 2i sin x \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}