Cheatography

Abstract Data Types (ADT)

List
Stack

Queue

Data Abstraction: Separation of
a data type’s logical properties
from its implementation.

-Logical Properties

--What are the possible values?
What operations will be needed?
-Implementation

--How can this be done in Java,
C++, or any other programming
language?

ADT is a set of objects together
with a set of operations. A data
type that does not describe or
belong to any specific data, yet
allows the specification of
organization and manipulation of
data.

List Operations
Find (First occurrence)
Insert

Remove

FindKth

MakeEmpty

PrintList

List Implementations

Simple Array
Simple (Singly) Linked List

Stack - LIFO (Last In First Out)

List Operations

Push
Pop
Top (Peek)

MakeEmpty

By Brkn

cheatography.com/brkn/

CmpE 250 MT1 Cheat Sheet
by BrKn via cheatography.com/209033/cs/44937/

Stack Implementations Trees (cont)

Array

LinkedList Operations take
constant time. Size
can grow/shrink

easily.

Overflow: When element count
in an array exceeds array size.
Underflow: Pop from an empty
stack.

Evaluate infix expressions, 2
stacks algorithm (Dijkstra):
--Value: Push onto the value
stack.

--Operator. Push onto the
operator stack.

--Left parenthesis: Ignore.
--Right parenthesis: Pop
operator and two values; push
the result of applying that
operator to those values onto
the operand (value) stack.

Queue - First In Last Out List

Operations

Enqueue
Dequeue

MakeEmpty

Queue Implementations

Circular Array (Circular Queue)

Linked List

Examples:

-Calls to a call center

-Jobs in the printer

-Network operations on routers
-CPU usage queues

Trees

Tree Collection of nodes such
that:
Root Unless empty, trees

have a root.

Not published yet.

Page 1 of 5.

Subtrees Remaining nodes
are partitioned into
trees themselves,
called subtrees.
Each subtree is
connected by a
directed edge from
the root.

Degree Number of subtrees
of a node.

Leaf / Node with degree 0.

Terminal

Node

Parent

Child

Ancestors

Path from node4 to nodey

Depth Length of the unique
path from root to
node.

Height Length of the
longest downward
path from the node
to aleaf.

Height of  Height of the root.

aTree

For its implementation, a node
can hold:

-Its first child.

-Its next sibling.

Thus siblings would be held as a
linked list.

Without parent/previous sibling
information, each node holds
only 2 references.

Last updated 10th November, 2024.

Each node can have at most 2

children.

Full BT When each node has
2 or 0 children.

Perfect It's full and each leaf

BT has the same depth.

Tree Traversal

Preorder Parent first.

Visit root. Traverse
left subtree.
Traverse right
subtree.

Postorder Parent last.

Traverse left
subtree. Traverse
right subtree. Visit
root.

Inorder Left-Parent-Right

Traverse left
subtree. Visit root.
Traverse right
subtree

Search Tree ADT - Binary

Search Tree

Provides inorder traversal.

Average case: Depth of all
nodes on average log(N)

Balanced BST maintains all
operations at h=O(logN) time

Sponsored by CrosswordCheats.com

Learn to solve cryptic crosswords!

http://crosswordcheats.com


http://www.cheatography.com/
http://www.cheatography.com/brkn/
http://www.cheatography.com/brkn/cheat-sheets/cmpe-250-mt1
http://www.cheatography.com/brkn/
http://crosswordcheats.com

Cheatography

AVL (Adelson-Velskii and
Landis) Tree

It's a BST.

Height of the left subtree and the
right subtree differ by at most 1.

Empty tree has height -1.
Balancing After Insertion

Left-Left  Single Right Rotation

Right-- Single Right Rotation
Right

Left- Double Left-Right
Right Rotation

Right- Double Right-Left
Left Rotation

Algorithm Analysis

Problem Solving: Life Cycle

Problem Definition
Functional  Calculate the mean
Requir- of n numbers etc.
ements What should the
program do?
Nonfun- Performance
ctional Requirements:
Requir- How fast should it
ements run? etc. How
should the program
do? Can be
considered as
Quality Attributes
Algorithm Design

By Brkn

cheatography.com/brkn/

CmpE 250 MT1 Cheat Sheet
by BrKn via cheatography.com/209033/cs/44937/

Algorithm Analysis (cont)

Algorithm A clearly
specified set
of instructions
for the
program to

follow.

Knuth's Characterization (5
properties as requirements for
an algorithm)

~Input 0 or more,
externally
produced

quantities

~Output 1 or more

quantities

~Definiteness Clarity,
precision of
each instru-

ction

~Finiteness The algorithm
has to stop
after a finite
amount of

steps

~Effectiveness  Each instru-
ction has to
be basic

enough and

feasible
Algorithm Analysis

Given an algorithm, will it satisfy
the requirements?

Given a number of algorithms to
perform the same computation,
which one is "best"?

The analysis Space and
required to Time
estimate the -  Complexity

resource use"
of an algorithm

Implementation

Not published yet.

Page 2 of 5.

Last updated 10th November, 2024.

Algorithm Analysis (cont)

Testing

Mainte Bug fixes, version
nance  management, new

features etc.

Space Complexity

Space The amount of

Complexity memory required
by an algorithm to

run to completion

Fixed Part  The size required
to store certain
data/variables,
that is indepe-
ndent of the size
of the problem, eg.
name of the input/-

output files,

Variable
Part

Space needed by
variables, whose
size is dependent
on the size of the
problem.
S(P)=c+Sp ¢ = constant, Sp =
instance charac-
teristics which
depends on a
particular instance

Pseudocode

Control Flow

if... then... [else...]

while... do...
repeat... until...
for... do...

Indentation instead of braces

Pseudocode (cont)

Method Declaration

Algorithm Method (arg [, arg...])
Input...

Output

Method Call

var.method(arg [, arg...])
MethodReturn Value

return expression

MethodExpressions
“« Assignment ( =in
code)

Equality Check
==in code)
Superscripts etc. mathematical
formatting allowed

Experi- Can't always use

mental

Approach

Low Level Make an addition

Algorithm =1 operation

Analysis Calling a method

Using or returning from a

Primitive method = 1

Operations  operation Index in
an array = 1
operation.

Comparison = 1

operation, etc.
Method: Count the primitive
operations to find O(f(n))
Growth
rate of the

Not dependent on
hardware.
running

time T (n)

is an

intrinsic

property of

an

algorithm

Sponsored by CrosswordCheats.com

Learn to solve cryptic crosswords!

http://crosswordcheats.com


http://www.cheatography.com/
http://www.cheatography.com/brkn/
http://www.cheatography.com/brkn/cheat-sheets/cmpe-250-mt1
http://www.cheatography.com/brkn/
http://crosswordcheats.com

Cheatography

Pseudocode (cont)

Asymptotic
Notation

Big-Oh, Big

Little-Oh

Characterizing Algorithms As A
Function Of Input Size

Solving Recursive Equations

by T(N)=T(N/2)+c=T-
Repeated (N/4)+c+c-
Substi- =..=T(N/2)+ke,
tution choose k = logN,

T(N)=T(1)+clogN-
=0O(logN)
by Telesc-
oping

T(N)=T(N/2)+c

T(N/2)=T(N/4)+c

+ -
(cance-
lling opposite
terms)
T(N)=T(1)+clogN-
=0O(logN)

Omega, Big Theta,

Dictionary ADT

A collection of (key, value) pairs
such that each key appears at

most once

/dea. Use the key as  Key-
the index information  Value

to reach the key Mapping

By Brkn

cheatography.com/brkn/

CmpE 250 MT1 Cheat Sheet
by BrKn via cheatography.com/209033/cs/44937/

Dictionary Operations

Find

Insert
Remove

Note: No operations that require

Dictionary Implementations

|i

Lists
Binary Search Trees

Hash Tables

Hash Table

Collision Resolving
Separate (Open
Chaining Hashing)
Open (Closed
Addressing Hashing -
Probing Hash
Tables)
--Open Collisions are
Hashing stored outside
of the table
--Closed Collisions are
Hashing stored at
another slot in
the table
Separate Chaining

Each cell in the hash table is the
head of a linked list

Elements are stored in the
hash-specified linked list

Records in order of

the linked list  insertion, key
can be value,
ordered by: frequency of

access
A = Load Factor
A = n/TableSize

Not published yet.

Page 3 of 5.

Last updated 10th November, 2024.

Hash Table (cont)

insert, find, remove take O(1+A)
on average

Closed Hashing (Probing Hash
Tables)

hj(x) = (hash(x) + f(i)) mod
TableSize, f(0)=0

f = Collision Resolution Strategy
--Linear Probing

--Quadratic Probing

--Double Hashing

Linear f(i)=i (linear
Probing function of i)
Primary n<TableSize
Clustering guarantees

finding a free
cell

Insertion time
can get long due
to blocks of
occupied cells
are formed

Primary Clustering : Any key
that hashes into the cluster -
even if the keys map to different
values- will require several
attempts to resolve collusion and
then it will be added to the
cluster.

Worst Case  O(n)

: find, insert

Deletion After many
requires deletions may
Lazy reorganize the
Deletion to table

not mess up

the table

Quadratic f(i)=i2 (quadratic
Probing function of i)

Hash Table (cont)

Eliminates primary
clustering
Unless if TableSize prime and
A<1/2, cannot guarantee finding
empty cell

Secondary Elements that
Clustering  hash to the same
position probe to
the same altern-

ative cells,

clustering there

Double
Hashing

f(i)=i-hasho(x)
(includes another
hash function)
Example: hasho(x)=R - (x mod
R), where R is a prime <
TableSize

Rehashing When A too big,
make bigger
TableSize and
rehash everything.
Takes O(n) but

happens rarely..

ALL Closed Hashing cannot
work with A =1

--Quadratic probing can fail if A
>0.5

--Linear probing and Double

hashing are slow if A > 0.5

Open Hashing becomes slow
onceA>2

Quadratic Probing Proof:

Sponsored by CrosswordCheats.com

Learn to solve cryptic crosswords!

http://crosswordcheats.com


http://www.cheatography.com/
http://www.cheatography.com/brkn/
http://www.cheatography.com/brkn/cheat-sheets/cmpe-250-mt1
http://www.cheatography.com/brkn/
http://crosswordcheats.com

Cheatography

Cuckoo Hashing

CmpE 250 MT1 Cheat Sheet
by BrKn via cheatography.com/209033/cs/44937/

Priority Queues (Heaps) (cont)

Binary Heap (cont)

Binary Heap Methods (cont)

2 hash tables Jobs sent to a printer, Simulation Heap is Complete binary deleteMin  Delete/make root
Only insert  Move the value in Environments (Discrete Event a tree is a BT filled empty, put the last
at the 1st the 1st table if Simulators) complete completely, except element into array
table collision binary maybe for the position 0,
- tree bottom row, which is percolate down
May cause cycles but if A<0.5, . .
. filled from left-to- until the last
cycle probability low. Still insert )
right element can be put
possible, so specify maximum deleteMin .
iteration count after which you e mto,t,h ey
rehash. For any element in position i: position.
Simple  Insert O(1), deleteMin --Left child is in position 2i Worst Average runtime is
gly) O(n) Right child is in position 2i+1 runtime is ~ an element at the
O(f(N)) =  T(N) < cf(N) when N Linked (after left child) O(logn) bottom is likely to
T(N) = n0. Upper-bound List --Parent in position |i/2} still go down to the
Q(g(N)) T(N) = cf(N) when N Sorted  Insert O(n), deleteMin Order Property bottom.
=T(N) 2 n0. Lower-bound Lfnked o) Every parentis smaller than or Building a Iterating insertion:
O(h(N)  T(N)=O(h(N))and  List equal fo its children, so findMin ~ Heap O(NIogN) worst
=T(N) T (N) = Q(h(N)) Binary  ©(logn) average for is O(1) case. O(N) on
Tight-bound (Exact) Search insert and deleteMin AMax Heap is the reverse, average.
o(p(N)) = T(N) < cp(N) Strict Vi allowing constant access to the ~ buildHeap ~ First fill the leafs.
T(N) Upper-bound (BST) max element ~Half of the tree is
f(N) is o(g(N)) if it's O(g(N)) but Binary  Canimplement as a filled already. Then,
not ©(g(N)) Heap single array, doesn't as you place the
O(1) constant require finks, Q(Iogn) insert Insert element in next elements, the
worst-case for insert . o subtrees will all be
O(logN)  logarithmic and deleteMin pzz::z:;o'ozzz:s valid heaps - do
O(log”N)  log-squared d- Parents can have d pmake an Zmpty n,ode, percolate down.
O(N) linear Heaps  children Then percolatsp lnti Thus O(logHeight)
O(N?) quadratic Leftist Heaps the new element can operations for each
O(N3) cubic Skew Heaps be put into the empty node.
02" exponential Binomial Queues position.
f(n)<O(g(n)) is the wrong usage. Worst Average runtime is
You need to say f(n) is (=) caszle constant
O(g(n)) Classic method for priority .runtlme
queues '°
Simply  (Different from heap in Ologn
For applications that require a called dynarmic-emory
sorted (but not fully sorted) order Heap allecation)
of procession of keys. Structure Property

By Brkn
cheatography.com/brkn/

Not published yet.
Last updated 10th November, 2024.
Page 4 of 5.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com


http://www.cheatography.com/
http://www.cheatography.com/brkn/
http://www.cheatography.com/brkn/cheat-sheets/cmpe-250-mt1
http://www.cheatography.com/brkn/
http://crosswordcheats.com

Ch h CmpE 250 MT1 Cheat Sheet
eatograp Yy by BrKn via cheatography.com/209033/cs/44937/

Binary Heap Methods (cont) Priority Queue Applications

There are more high depth (cont)

nodes than high height nodes in If k=N, we get a

a heap thus buildHeap is a sorted list. This is

faster method, O(N) worst case heapSort which is

Sum of all heights: O(NlogN)

S =logN + 2(logN-1) + ... +

2k(logN - k), k=logN Discrete Instead of experi-
Event menting, put all

28 = 2logN + ... + 2*"(logN - k)
Simulation events to happen
28-S = 2+2%+..+2X - logN since

et in a queue.
k=logN thus 27" (logN-k)=0 Advance clock to
S = 2"-2-10gN the next event
S =2N - logN - 2 thus O(N) each tick. Events

Sum of all depths: are stored in a

S=0+214 R4 4 JoN- heap to find the

next one easily.
"(logN - 1)

--Tick A quantum unit
S = NlogN-2N+2 thus O(NlogN)
Priority Queue Applications
Operating System Design
Some Graph Algorithms
Selection  Given a list of N
and elements, and an
Sorting integer k, the
Problems selection problem is
to find the kth
smallest element.
Take N elements,
apply buildHeap, do
deleteMin k times.
By BrKn Not published yet. Sponsored by CrosswordCheats.com
cheatography.com/brkn/ Last updated 10th November, 2024. Learn to solve cryptic crosswords!

Page 5 of 5. http://crosswordcheats.com


http://www.cheatography.com/
http://www.cheatography.com/brkn/
http://www.cheatography.com/brkn/cheat-sheets/cmpe-250-mt1
http://www.cheatography.com/brkn/
http://crosswordcheats.com

	CmpE 250 MT1 Cheat Sheet - Page 1
	Abstract Data Types (ADT)
	Stack Implem­ent­ations
	Binary Tree
	Tree Traversal
	List Operations
	Queue - First In Last Out List Operations
	Search Tree ADT - Binary Search Tree
	Queue Implem­ent­ations
	List Implem­ent­ations
	Stack - LIFO (Last In First Out) List Operations
	Trees

	CmpE 250 MT1 Cheat Sheet - Page 2
	AVL (Adels­on-­Velskii and Landis) Tree
	Space Complexity
	Algorithm Analysis
	Pseudocode

	CmpE 250 MT1 Cheat Sheet - Page 3
	Dictionary Operations
	Dictionary Implem­ent­ations
	Hash Table
	Dictionary ADT

	CmpE 250 MT1 Cheat Sheet - Page 4
	Cuckoo Hashing
	Priority Queue Operations
	Priority Queue Implem­ent­ations
	Time Complexity
	Binary Heap Methods
	Binary Heap
	Priority Queues (Heaps)

	CmpE 250 MT1 Cheat Sheet - Page 5
	Priority Queue Applic­ations


