
Javascript Algorithmic Cookbook Cheatsheet Cheat Sheet
by BriYvonne01 (briyvonne01) via cheatography.com/61413/cs/31853/

Involving collectionsInvolving collections

Two
Pointer
Technique

Two pointers, each starting from the beginning and the
end until they both meet OR One pointer moving at a
slow pace, while the other pointer moves at twice the
speed

Collections are arrays, string, or linked lists. Other application:
searching for pairs in an array, two sorted arrays need to be merged
(2 pointers for both arrays), the pattern of using a fast pointer and a
slow pointer (detecting cycles in a linked list)

The Two Heaps TechniqueThe Two Heaps Technique

Scheduling find the earliest or latest meeting at any given time

Finding the median in a large collection.

Largest and smallest values in a set.

To implement a priority queue

Binary Search TechniqueBinary Search Technique

Binary search is a technique for finding out whether an item is
present in a sorted array or not

It makes use of the fact that if a value is greater than array[i] and the
array is sorted, then the value has to lie at index (i+1) or higher.
Similarly, if the value is less than array[i], then it has to lie at an index
less than i.

Binary search works by comparing the value to search for with the
middle item of the array. If the value is higher than the middle item,
then the search proceeds in the right half of the array. If the value is
less than the middle, then the left sub-array is searched. This
process is repeated, and each time, the sub-array within which the
value is being searched is reduced by half.

This gives an overall time complexity of O(log n).

Merge Sort AlgorithmMerge Sort Algorithm

Divides the input collection into two portions, recursively calls itself
for the two divided portions, and then merges the two sorted
portions. Merge Sort Algorithm works in three parts:

Divide: At first, it divides the given collection of elements into two
equal halves and then recursively passes these halves to itself.
Sorting: Unless, there is only one element left in each half, the
division continues, after that, those two end elements (leaf nodes)
are sorted. Merging: Finally, the sorted arrays from the top step are
merged in order to form the sorted collection of elements

Time Complexity: O(NlogN)

Space Complexity: O(N)

Bubble Sort AlgorithmBubble Sort Algorithm

The adjacent elements in the collection are compared and the
positions are swapped if the first element is greater than the second
one. In this way, the largest valued element "bubbles" to the top.

Usually, after each loop, the elements furthest to the right are in
sorted order. The process is continued until all the elements are in
sorted order.

Time Complexity: O(N2)

Space Complexity: O(1)

Keeping track of the "balancing"Keeping track of the "balancing"

When you want to keep track of what's "coming in" or incoming and
what's what's "going out" or outgoing

String methodsString methods

length gets the string length

indexOf() gets the index of first occurence of the character or a
substring in the string.

toLowe‐
rCase()

converts the string to lowercase (or similarly, to upperc‐
ase).

substring gets a substring from defined index point in the string.

By BriYvonne01BriYvonne01 (briyvonne01)

cheatography.com/briyvonne01/

Published 28th April, 2022.
Last updated 30th April, 2022.
Page 1 of 2.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/briyvonne01/
http://www.cheatography.com/briyvonne01/cheat-sheets/javascript-algorithmic-cookbook-cheatsheet
http://www.cheatography.com/briyvonne01/
http://crosswordcheats.com

Javascript Algorithmic Cookbook Cheatsheet Cheat Sheet
by BriYvonne01 (briyvonne01) via cheatography.com/61413/cs/31853/

Array MethodsArray Methods

pop removes (pops) the last element of an array

push method adds new items to the end of an array

shift method removes the first item of an array

unshift adds new elements to the beginning of an array

sort sorts the elements of an array in alphabetical in
ascending order

filter method creates a new array filled with elements that pass
a test provided by a function. array.filter(function(curre‐
ntValue, index, arr), thisValue)

map creates a new array from calling a function for every array
element.

foreach method calls a function for each element in an array.
array.forEach(function(currentValue, index, arr),
thisValue)

find method returns the value of the first element that passes a
test. array.find(function(currentValue, index, arr),this‐
Value)

includes returns true if an array contains a specified value. "fru‐
its.includes("Mango");"

reverse reverses the order of the elements in an array

every executes a function for each array element. returns
true/false if the function returns true/false for all elements.

join method returns an array as a string

When to use BFS instead of DFS?When to use BFS instead of DFS?

When you need to find the shortest path between any two nodes in
an unweighted graph.

If you're solving a problem, and know a solution is not far from the
root of the tree, BFS will likely get you there faster.

If the tree is very deep, DFS with heuristics might be faster.

Depth First Search (DFS)Depth First Search (DFS)

Preorder
Traversal

We start from the root node and search the tree vertically
(top to bottom), traversing from left to right. The order of
visits is ROOT-LEFT-RIGHT

In-order
Traversal

Start from the leftmost node and move to the right nodes
traversing from top to bottom. The order of visits is
LEFT-ROOT-RIGHT

Post-
order
Traversal

Start from the leftmost node and move to the right
nodes, traversing from bottom to top. The order of visits
is LEFT-RIGHT-ROOT

In Depth First Search (DFS), a tree is traversed vertically from top to
bottom or bottom to top. As you might infer from its namesake, we
will traverse as deeply as possible, before moving on to a neighbor
node. There are three main ways to apply Depth First Search to a
tree.

Time complexity of an array (worst case)Time complexity of an array (worst case)

Access O(1)

Search O(n)

Insertion O(n)

append O(1)

Deletion O(n)

Insertion Sort AlgorithmInsertion Sort Algorithm

The collection is virtually split into an ordered and an unordered part.
Elements from the unordered portion are picked and placed at the
correct index in the ordered part.

Time Complexity: O(N2)

Space Complexity: O(1)

By BriYvonne01BriYvonne01 (briyvonne01)

cheatography.com/briyvonne01/

Published 28th April, 2022.
Last updated 30th April, 2022.
Page 2 of 2.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/briyvonne01/
http://www.cheatography.com/briyvonne01/cheat-sheets/javascript-algorithmic-cookbook-cheatsheet
http://www.cheatography.com/briyvonne01/
http://crosswordcheats.com

	Javascript Algorithmic Cookbook Cheatsheet Cheat Sheet - Page 1
	Involving collections
	Merge Sort Algorithm
	The Two Heaps Technique
	Bubble Sort Algorithm
	Binary Search Technique
	Keeping track of the "balancing"
	String methods

	Javascript Algorithmic Cookbook Cheatsheet Cheat Sheet - Page 2
	Array Methods
	Depth First Search (DFS)
	Time complexity of an array (worst case)
	Insertion Sort Algorithm
	When to use BFS instead of DFS?

