

Physics MidTerm 2 Cheat Sheet

by Jaco (brandenz1229) via cheatography.com/138824/cs/29649/

Chapter 6: Work and	Kinetic Eneray	
m = mass	g = 9.8 m/s	
F = Weight (N)	F = m · g	
s = distance	KE = Kinetic Energy	
W = Workdone		
Power = P (Watts)	x = cos y = sin	
1 km = 1000m	1kg = 1000g	
$\Delta K = Kf - Ki$	Friction = always negative	
g = -9.8 (decre- asing)	g = 9.8 (normal)	
a = g (gravitational acceleration)	Θ = Angle between F and s	
= Component of F parallel to dl	v = velocity	
W = ($\int P2$ to P1) F·dl	$W = F \mid \mid dI$	
W = (∫P2 to P1) F⋅cosΘ⋅dl	$W = F \cdot s$ (Joules)	
$Pav = \Delta W / \Delta t$	$P = \lim \Delta t > 0 (\Delta W / \Delta t) = dW / dt$	
$Vf = Vi^2 + 2 \cdot a \cdot s$	P = (W/t)	
Constant Speed : (a = 0)	F = force $P = F \cdot v$	
Friction (opposite) = cos(180°)		
$W_X = F(\cos\Theta)\cdot s W_Y = F(\sin\Theta)\cdot s$		
$a = (Vf^2 - Vi^2) / (2 \cdot s)$		
$F_{S} = (1/2) \cdot m \cdot V_{f}^{2} - (1/2) \cdot m \cdot V_{i}^{2}$		
Wgrav = m⋅g⋅h	P = (W/t)	
$KE = (1/2) \cdot m \cdot V^2$	PE = m·g·h	

Chapter 7: Potential Ene Conservation	rgy, Energy
Potential Energy = U, PE	$\Delta K = -\Delta U$ grav
K = Kinetic Energy	R = Radius
s = yf - yi	$U_{grav} = m \cdot g \cdot y$
$\Delta s = \Delta x \hat{i} + \Delta y \hat{j}$	cm = circular motion

Chapter 7: Potential Energy, Energy Conservation (cont)		
	k = constant of spring	
$PE = (1/2) \cdot k \cdot x^2$		
Wgrav = w- vector · Δs- vector	Diameter = 2 ⋅ Radius	
Wf = Work Done by Friction	if elastic KE = PE	
Wgrav = F × s	$W_{grav} = m \cdot g \cdot yi - m \cdot g \cdot yf$	
Ki + Ui = Kf + Uf	$(1/2)\cdot m\cdot Vi^2 + m\cdot g\cdot yi =$ $(1/2)\cdot m\cdot Vf^2 + m\cdot g\cdot yf$	
if gravity does work	Wtotal = Kf - Ki	
E = K + Ugrav	Wtotal = Wgrav + We 1 + Wother	
Wother + Ui - Uf = Kf - Ki arrange to Ki + Ui + Wot	Work done on a spring $W = (1/2)KE \cdot Xf^2 - (1/2)KE \cdot Xi^2$	
her = Kf + Uf	Work done by a spring $W = (1/2)KE \cdot Xi^{2} - (1/2)KE \cdot Xf^{2}$	
$U_{\text{cm}} = m \cdot g \cdot R$	Elastic Potential Energy Uel = (1/2)·KE·x ²	
	Work Done by Elastic Force Wel = $(1/2)\cdot KE\cdot xi^2$ - $(1/2)\cdot KE\cdot xf^2$	

Conservation (cont)	:riergy, ⊏riergy		
Friction: E	aw of Conservation of inergy K + ΔU + ΔUint = 0		
$F = Fx + Fy + Fz \qquad F$ $Fx(x) = -m \cdot g$ $Fy(y) = -m \cdot g$ $Fz(z) = -m \cdot g$	$f_{x} = (1/2) \cdot K \cdot x^{2}$		
Observa O. Managara	- Institute Callisiana		
Chapter 8: Momentun	n, Impulse, Collisions		
p = momentum	J = Impulse		
m = mass	v = velocity		
$P = m \cdot v (kg \cdot m/s)$			
$F = dp / dt$ $J_{Y} = (\int tf \text{ to ti}) \Sigma Fy$ dt	$J = \Sigma F (tf - ti)$ $J = \Sigma F \cdot \Delta t$ $J = (\int tf to ti) \Sigma F dt$		
Jy= $(Fav)y$ (tf - ti) Jy = Pfy - Piy Jy = $(m\cdot Vfy)$ - $(m\cdot V$ iy)	$J_X = (\int f f to ti) \Sigma F x$ dt $J_X = (Fav)_X (tf - ti)$ $J_X = Pf_X - Pi_X$ $J_X = (m \cdot Vf_X) - (m \cdot Vi_X)$		
$\Sigma F = (Pf - Pi) / (tf - ti)$			
$J = (Pf - Pi) = \{F\} : C$	$J = (Pf - Pi) = \{F\}$: Change in Momentum		

Chapter 7: Potential Energy. Energy

By Jaco (brandenz1229)

Published 3rd November, 2021. Last updated 3rd November, 2021. Page 1 of 1.

if elastic force does work, and mechanical

energy is conserved

Ki + Uel, i = Kf + Uel, f

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

P = PA + PB = |PA + PB|

 $m1 \cdot v1 + m2 \cdot v2 =$

P1+P2 = constant

constant

Assuming m1 and m2 don't change

 $Vf = (m1 \cdot v1 + m2 \cdot v2) / (m1 + + m2)$

(P1+P2)i = (P1+P

2**)**f

Pi = Pf

cheatography.com/brandenz1229/