Cheatography

Physics MidTerm 2 Cheat Sheet by Jaco (brandenz1229) via cheatography.com/138824/cs/29649/

Chapter 6: Work and Kinetic Energy		
m = mass	g = 9.8 m/s	
F = Weight (N)	$F = m \cdot g$	
s = distance	KE = Kinetic Energy	
W = Workdone		
Power = P (Watts)	x = cos y = sin	
1 km = 1000m	1kg = 1000g	
$\Delta K = Kf - Ki$	Friction = always negative	
g = -9.8 (decre- asing)	g = 9.8 (normal)	
a = g (gravitational acceleration)	Θ = Angle between F and s	
= Component of F parallel to dl	v = velocity	
W = (∫P2 to P1) F⋅dI	$W = F \mid \mid dI$	
W = (∫P2 to P1) F⋅cosΘ⋅dI	W = $F \cdot s$ (Joules)	
$P_{av} = \Delta W / \Delta t$	$P = \lim \Delta t > 0 (\Delta W / \Delta t) = dW / dt$	
$V_f = V_i^2 + 2 \cdot a \cdot s$	P = (W/t)	
Constant Speed : (a = 0)	$F = force$ $P = F \cdot v$	
Friction (opposite) = co	os(180 ⁰)	
$W_X = F (\cos\Theta) \cdot s \parallel W_Y$	− = F (sinΘ)·s	
$a = (V_{f}^{2} - V_{i}^{2}) / (2 \cdot s)$		
$F_{s} = (1/2) \cdot m \cdot V_{f}^{2} - (1/2) \cdot m \cdot V_{i}^{2}$		
Wgrav = m·g·h	P = (W/t)	
$K_E = (1/2) \cdot m \cdot V^2$	PE = m·g·h	
Chapter 7: Potential Energy, Energy Conservation		
Potential Energy = U, PE	ΔK = -ΔU grav	
K = Kinetic Energy	R = Radius	
s=yf-yi	$U_{\texttt{grav}} = \mathbf{m} \cdot \mathbf{g} \cdot \mathbf{y}$	
$\Delta s = \Delta x \hat{i} + \Delta y \hat{j}$	cm = circular	

Chapter 7: Potential Energy, Energy Conservation (cont)		
	k = constant of spring	
PE = (1/2)·k·x ²		
Wgrav = w- vector · Δs- vector	Diameter = 2 · Radius	
Wf = Work Done by Friction	if elastic KE = PE	
Wgrav =F×s	$W_{grav} = m \cdot g \cdot yi - m \cdot g \cdot yf$	
Ki+Ui=Kf+ Uf	$(1/2)\cdot m\cdot Vi^{2} + m\cdot g\cdot yi =$ $(1/2)\cdot m\cdot Vf^{2} + m\cdot g\cdot yf$	
if gravity does work	Wtotal = Kf - K i	
E = K + U grav	Wtotal = Wgrav + We l + Wother	
Wother + Ui - Uf = Kf - Ki arrange to Ki + Ui + Wot	Work done on a spring W = $(1/2)KE \cdot Xf^2$ - $(1/2)KE \cdot Xi^2$	
her=Kf+Uf	Work done by a spring W = $(1/2)$ KE·X i^2 - $(1/2)$ KE·X f^2	
$U_{CM} = \mathbf{m} \cdot \mathbf{g} \cdot \mathbf{R}$	Elastic Potential Energy Uel = $(1/2)$ ·KE·x ²	
	Work Done by Elastic Force Wel = (1/2)·KE·xi ² - (1/2)·KE·xf ²	
if elastic force does work, and mechanical energy is conserved Ki + Uel, i = Kf + Uel, f		

Chapter 7: Potential Energy, Energy Conservation (cont)

Work Done by	Law of Conservation of
Friction:	Energy
Wf = -Wfric	$\Delta K + \Delta U + \Delta U$ int = 0
$Wf = -(-fk \cdot s)$	
$W\texttt{f}=\mu\texttt{k}{\cdot}m{\cdot}g{\cdot}s$	
$F = F_X + F_Y + F_Z$	$F_{X} = (1/2) \cdot K \cdot x^2$
F≍(x) = -m·g	
Fy(y) = -m⋅g	
F∠(z) = -m·g	

Chapter 8: Momentum,	, Impulse, Collisions	
p = momentum	J = Impulse	
m = mass	v = velocity	
$P = m \cdot v \; (kg \cdot m/s)$		
F = dp / dt	$J = \Sigma F (tf - ti)$ $J = \Sigma F \cdot \Delta t$	
J _∑ = (∫tf to ti)ΣFy dt	J = (∫tf to ti) ΣF dt	
Jy=(Fav)y(tf-ti)		
$J_{y} = Pf_{y} - Pi_{y}$	dt	
$J_{y} = (m \cdot V f_{y}) - (m \cdot V$	Jx=(Fav)x (tf - ti) Jx = Pfx - Pix	
iy)		
	$J_x = (m \cdot V_{fx}) - (m \cdot V_{fx})$	
	(m·Vix)	
ΣF = (Pf - Pi) / (tf -	J = Fav(tf-ti)	
ti)		
J = (Pf - Pi) = {F} : Change in Momentum		
$P = P_{A} + P_{B} = P_{A} + P_{B} $		
Assuming m1 and m2 don't change		
m1.v1+m2.v2 =	(P1+P2)i = (P1+P	
constant	2)f	
P1+P2 = constant	Pi=Pf	
Vf = (m1·v1+m2·v2) / (m1++m2)		

By Jaco (brandenz1229)

motion

Published 3rd November, 2021. Last updated 3rd November, 2021. Page 1 of 1. Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/brandenz1229/