Cheatography

Physics MidTerm 1 Cheat Sheet
by Jaco (brandenz1229) via cheatography.com/138824/cs/29292/

Chapter 1 Unit(s) / Mechanics / Sig-Figs / Vectors

Speed $=(d / t)$	$d=$ distance $: m$	
$\\|(\mathrm{m} / \mathrm{s})$	$=$ meters	
	$\mathrm{t}=$ time $: \mathrm{s}=$	
	seconds	

$1 \mathrm{~km}=1000 \mathrm{~m}$
$1 \mathrm{~kg}=1000 \mathrm{~g}$ mass $=(\mathrm{kg})$
1 hour $=3600$ time $=$
seconds (seconds)
1 mile $=\quad$ length $=($ meter $)$
1.609 km

Volume $=1 \mathrm{~cm}^{3}$
Sig Figs
$\pi=3.14$ (3 sigfig)
$\pi=3.14159$ (6 sigfig)
Density = (mass / volume) || (kg /
$\left.\mathrm{m}^{3}\right) \|\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
\checkmark = square root
Vector (Displacement) $=\sqrt{ }(x)^{2}+$ (y) ${ }^{2}$

Total distance $=x+y$
Vector $\mathrm{A}=$ Vector $\mathrm{B} i f \mid$ Vector $\mathrm{A} \mid$ = |Vector B|
Magnitude: $\sqrt{ }(x)^{2}+(y)^{2}=($ Answer in Units) : 1 Direction

Components of Vector

Vector $A=A x \quad A x=A \cdot \cos (\Theta)$

+ Ay $\quad A y=A \cdot \sin (\Theta)$
$A=\sqrt{ }(A \cdot \cos (\Theta))^{2}+(A \cdot \sin (\Theta))^{2}$
$\Theta=$ Angle
$\begin{array}{ll}x=\cos (\Theta) & \cos (\Theta)=A x / A \\ y=\sin (\Theta) & \sin (\Theta)=A y / A\end{array}$

Chapter 1 Unit(s) / Mechanics / Sig-Figs / Vectors (cont)
$\tan (\Theta)=(y / x)$ or $(A y / A x)$ or (By/Bx)
$x=\hat{\imath} \quad$ Vector $A=A x \hat{\imath}+A y \hat{\jmath}$
$y=\hat{\jmath} \quad$ Vector $B=B x i ̂+B y \hat{\jmath}$
$\mathrm{z}=\hat{\mathrm{k}}$
Vector $\mathrm{R}=$ Vector $\mathrm{A}+$ Vector B
Vector $R=(A x+B x) \hat{I}+(A y+$
By) \bar{j}
Vector $R($ direction $)=(x) \hat{\imath}+(y) \hat{\jmath}$ Vector $R($ magnitude $)=\sqrt{ }(x))^{2}+$ (y) ${ }^{2}$

Quadratic Formula

$x=\left(-b+/-\sqrt{ } b^{2}-4 \cdot a \cdot c\right) /(2 \cdot a)$

Chapter 2: Motion along A Straight Line

One Dimensional Motion

Average Speed = (total distance) / (time)

Displa cement $=$ Final Point Initial Point

Not Constant Velocity

Average Velocity (V) = (displacement / time)

Average Velocity (V) = ($\Delta \mathrm{x} / \Delta \mathrm{t}$)
Instantaneous Velocity $=$
derivative of the given equation Instantaneous Velocity = ((afinal) - (a-initial)) / ((t-final)-(tinitial))
$\Delta t=(t-$ final $)-(t-$-initial $)$
$\Delta x=(x-$ final $)-(x-$ initial $)$

Acceleration

$\Delta \mathrm{V}=(\mathrm{V}$-final) $)$ (V -initial)
$\Delta t=(t-f i n a l)$ - (t-initial)
Chapter 2: Motion along A
Straight Line (cont)

Instantaneous Acceleration =
derivative of the given equation

Constant Acceleration

= constant acceleration motion in 1D

V-final $=(a \cdot t)+V$-initial
V -final ${ }^{2}=(\mathrm{v} \text {-initial })^{2}+2 \cdot a($
(t-final) - (t-initial))
$\Delta x=(x-$ final) $)$ (x-initial)
$\Delta x=(v$-average $) \cdot($ seconds $)$
$\Delta x=(1 / 2 \cdot(V$-final $)+(V$-initial $))$
-t (seconds)
x-final $=1 / 2((V$-initial $)+(V$ -
final) $) \cdot t+(x$-initial $)$
x-final $=x$-initial $+(V$-initial $)$.
$t($ seconds $)+1 / 2 \cdot a \cdot t^{2}$
Gravity (g) $=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
V-final $=(V$-initial $)+g^{*} t$
(seconds)

Chapter 3: 2D or 3D Motion

The Acceleration Vector

$\mathrm{a}=\Delta \mathrm{V} / \quad(\mathrm{v}$-final $)=(\mathrm{v}$-initial $)+$
$\Delta t \quad \Delta V$
$\Delta V=(v-$ final $)-(v-$ ini-
tial)
$\Delta \mathrm{V}=(\mathrm{v}-\mathrm{final})+(-(\mathrm{v}-\mathrm{i}-$ nitial))
Constant Speed Changing
Direction
$\mathrm{a}=\Delta \mathrm{V} / \quad(\mathrm{v}$-final $)=(\mathrm{V}$-initial $)+$
Δt ΔV
$\Delta V=(v-$ final $)-(v-$ ini-
tial)

Chapter 3: 2D or 3D Motion (cont)

Projectile Motion

two assumptions:

1. The freefall acceleration (g) is constant
2. Air resistance is negligible y-direction = constant acceleration motion
x-direction = constant velocity motion

Acceleration is only negative (y direction)
$\mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$

Constant Velocity Motion

$x=(x$-initial $)+(v[x$-direction $]) \cdot t$
V (y -direction) $=(\mathrm{v}$-initial) $[\mathrm{y}$-direction] $+\mathrm{g} \cdot \mathrm{t}$
$(y$-final $)=(y$-initial $+(v$-initial $)[y-$ direction] $\cdot t+1 / 2 \cdot g \cdot t^{2}$
$\mathrm{V}(\mathrm{y} \text {-direction })^{2}=(\mathrm{v}$-initial) $[\mathrm{y}$-direction $)^{2}+2 \cdot g((y-$ final $)-(y-i n i-$ tial))
$\mathrm{V}(\mathrm{y}$-direction $)=(\mathrm{v}$-initial) $[\mathrm{y}$-direction] $+\mathrm{g} \cdot \mathrm{t}$

Trig Identity

$\sin (\Theta \Theta)=\sin \Theta \cos \Theta+\cos \Theta \sin \Theta$
Constant Speed Motion
velocity is always changing
$r=$ radius $\quad V=(2 \pi r)^{2}: 4 \pi^{2} r$
$\mathrm{T}=$ time-period
$\mathrm{a}=\Delta \mathrm{V} / \Delta \mathrm{t}$: never zero
$\Delta V=(V / r) \cdot \Delta r$

Centripetal Acceleration

$A c=\left(V^{2}\right) / r$
$A c=(2 \pi r)^{2} / r$
$\mathrm{Ac}=4 \pi^{2} \mathrm{r} / \mathrm{T}^{2}$
Tangential and Radial Acceleration

Ac $=\mathrm{a}-\mathrm{rad}$

By Jaco (brandenz1229)
cheatography.com/brandenz1229/

Published 29th September, 2021.
Last updated 29th September, 2021.
Page 1 of 2.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours!
https://apollopad.com

Cheatography
Physics MidTerm 1 Cheat Sheet
by Jaco (brandenz1229) via cheatography.com/138824/cs/29292/

Chapter 3: 2D or 3D Motion
(cont)
Vector A-total $=$ Vector A-tangential + Vector A-radical A-total $=\sqrt{ }(\text { A-tan })^{2}+(A-r a d)^{2}$

Relative Motion

$r^{\prime}=((v$-initial $) \cdot t)-($ vector-r $)$
Vector- $r=\sqrt{ }((v \text {-initial }) \cdot t)^{2}+\left(r^{\prime}\right)^{2}$
Vector- ${ }^{\prime}$ ' $=(\mathrm{v}$-final) $)$ ($(\mathrm{v}$-initial $)$

Chapter 4: Newtons Laws

Superposition of Forces

Vector-R = Vector-F1 + Vector-
F2
$\mathrm{N}=$ Net Force
$\mathrm{Fx}=\mathrm{N} . \quad \mathrm{Rx}=\sum \mathrm{Fx}$
$\cos (\theta) \quad \mathrm{Ry}=\Sigma \mathrm{Fy}$
$F y=N$.
$\sin (\theta)$
$R=\sqrt{ }(R x)^{2}+R y^{2}$

Newton's 1st Law

No Force; No Acceleration; No
Motion
Inertia:
the tendency of an object to resist any attempt to change its velocity

Newton's 2nd Law

Net Force $=a(x$-direction $)=$
$\mathrm{m} \cdot \mathrm{g} \quad$ (Fx total) / mass $a(y$-direction $)=$ (Fy total) / mass
$\tan (\theta)=y / x$
Newton's 3rd Law
Fn = Normal Force
$F y=F n-m \quad F x=m \cdot g \cdot \sin (\theta)$
$\cdot \mathrm{g} \cdot \cos (\Theta)$

By Jaco (brandenz1229)
cheatography.com/brandenz1229/

Chapter 5: Applying Newton's
Laws
vector- $F=\quad F x=m \cdot a x$
$\mathrm{m} \cdot \mathrm{a}$
$T=$ tension $\quad F y=m \cdot a y$
: friction
$\begin{array}{ll}\mathrm{y}=\mathrm{T}-\mathrm{m} \cdot \mathrm{g} & \mathrm{Fr}=\mathrm{Fn}: \text { Normal } \\ & \text { Force }(\mathrm{Fn})\end{array}$
No Friction $\quad \alpha=$ Coefficient
$\mathrm{Fn}=\mathrm{m} \cdot \mathrm{g} \quad \mathrm{Fx}=\mathrm{T} 1 \cdot \cos (\theta)+$
$\mathrm{T} 2 \cdot \cos (\theta)$
$F y=T 1 \cdot \sin (\theta)+$ T2 $\cdot \sin (\theta)$

Friction

Static Friction (fs): Object not in motion
Kinetic Friction (fK): Object is in motion

Empirical $\quad \mu \mathrm{k}$: Coefficient of
Formula Kinetic Friction
$\mu \mathrm{s}$: Coefficient of
Static Friction
Static: fs $\leq \mu \mathrm{s}$.
Fn
Static: $\mathrm{fk}=\mu \mathrm{k}$.
Fn

Terminal $\quad \operatorname{Frav}$
Speed

	$\mu \mathrm{s}$: Coefficient of Static Friction Static: fs $\leq \mu \mathrm{s}$. Fn Static: $\mathrm{fk}=\mu \mathrm{k}$. Fn
Terminal Speed	Frav
	Frav ${ }^{2}$
	$\begin{aligned} & \mathrm{Fc}=\mathrm{m} \cdot \mathrm{ac}: \mathrm{m} . \\ & \mathrm{V}^{2} / \mathrm{r} \end{aligned}$

Chapter 5: Applying Newton's
Laws (cont)
Vertical Top: Fy $=-m \cdot\left(V^{2} / r\right)$
Circle Bottom: $\mathrm{Fy}=\mu \mathrm{s}$ * m . $\left(\mathrm{g}+\mathrm{V}^{2} / \mathrm{r}\right)$
$\operatorname{maxV}=\sqrt{ }(\mathrm{fs} \cdot \mathrm{r}) / \mathrm{m}$
$\max V=\sqrt{ } \mu \mathrm{s} \cdot \mathrm{g} \cdot \mathrm{r}$
Top $\quad T \cdot \sin (\theta)=m \cdot a c$
View $\quad \mathrm{ac}=\tan (\theta) \cdot \mathrm{g}$

Published 29th September, 2021. Last updated 29th September, 2021. Page 2 of 2.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

