Cheatography

Physics MidTerm 1 Cheat Sheet

by Jaco (brandenz1229) via cheatography.com/138824/cs/29292/

Chapter 1 Unit(s) / Mechanics / Sig-Figs / Vectors

Speed = (d/t) d = distance : m || (m/s) = meters t = time : s =

t = time : s = seconds

1 km = 1000 m

1 kg = 1000 g mass = (kg)

1 hour = 3600 time = seconds (seconds)

1 mile = length = (meter) 1.609 km

Volume = 1 cm^3

Sig Figs

 $\pi = 3.14 (3 \text{ sigfig})$

 π = 3.14159 (6 sigfig)

Density = (mass / volume) || (kg / m^3) || (g / cm^3)

√ = square root

Vector (Displacement) = $\sqrt{(x)^2}$ + $(y)^2$

Total distance = x + y

Vector A = Vector B if |Vector A| = |Vector B|

Magnitude: $\sqrt{(x)^2+(y)^2} = (Answer$ in Units) : 1 Direction

Components of Vector

Vector A = Ax Ax = A · cos(Θ) + Ay Ay = A · sin(Θ) A = $\sqrt{(A \cdot \cos(\Theta))^2 + (A \cdot \sin(\Theta))^2}$

Θ = Angle

 $x = cos(\Theta)$ $cos(\Theta) = Ax / A$ $y = sin(\Theta)$ $sin(\Theta) = Ay / A$

Chapter 1 Unit(s) / Mechanics / Sig-Figs / Vectors (cont)

 $tan(\Theta) = (y / x) \text{ or } (Ay / Ax) \text{ or}$ (By / Bx)

 $x = \hat{i}$ Vector $A = Ax\hat{i} + Ay\hat{j}$ $y = \hat{j}$ Vector $B = Bx\hat{i} + By\hat{j}$ $z = \hat{k}$

Vector R = Vector A + Vector B Vector R = $(Ax + Bx)\hat{i} + (Ay + By)\hat{j}$

Vector R (direction) = $(x)\hat{i} + (y)\hat{j}$ Vector R (magnitude) = $\sqrt{(x)}\hat{i}^2 + (y)\hat{i}^2$

Quadratic Formula

 $x = (-b + /- \sqrt{b^2} - 4 \cdot a \cdot c) / (2 \cdot a)$

Chapter 2: Motion along A Straight Line

One Dimensional Motion

Average Speed = (total distance) / (time)

Displa cement = Final Point - Initial Point

Not Constant Velocity

Average Velocity (V) = (displacement / time)

Average Velocity (V) = $(\Delta x / \Delta t)$

Instantaneous Velocity = derivative of the given equation Instantaneous Velocity = ((a-final) - (a-initial)) / ((t-final)-(t-initial))

 $\Delta t = (t-final) - (t-initial)$

 $\Delta x = (x-final) - (x-initial)$

Acceleration

 $\Delta V = (V-final) - (V-initial)$ $\Delta t = (t-final) - (t-initial)$

Chapter 2: Motion along A Straight Line (cont)

Acceleration (a) = if a > 0 $(\Delta V) / (\Delta t)$ (positive) [a is constant] if a < 0 (negative)

Instantaneous Acceleration = derivative of the given equation

Constant Acceleration

= constant acceleration motion in 1D

V-final = $(a \cdot t) + V$ -initial V-final² = (v-initial)² + 2 · a ((t-final) - (t-initial))

$$\begin{split} \Delta \textbf{x} &= (\text{x-final}) - (\text{x-initial}) \\ \Delta \textbf{x} &= (\text{v-average}) \cdot (\text{seconds}) \\ \Delta \textbf{x} &= (1/2 \cdot (\text{V-final}) + (\text{V-initial})) \\ \cdot \textbf{t} & (\text{seconds}) \end{split}$$

$$\begin{split} & \texttt{x-final} = 1/2 \; (\; (V\text{-initial}) + (V\text{-}\\ & \text{final}) \;) \cdot t + (x\text{-initial}) \\ & \text{x-final} = x\text{-initial} + (V\text{-initial}) \cdot \\ & t(\text{seconds}) + 1/2 \cdot a \cdot t^2 \end{split}$$

Gravity (g) = -9.8 m/s^2

V-final = (V-initial) + g * t (seconds)

Chapter 3: 2D or 3D Motion

The Acceleration Vector

 $\begin{array}{ll} a=\Delta V \: / & \text{(v-final)} = \text{(v-initial)} + \\ \Delta t & \Delta V \\ & \Delta V = \text{(v-final)} - \text{(v-initial)} \\ & \Delta V = \text{(v-final)} + \text{(-(v-initial))} \end{array}$

Constant Speed Changing Direction

 $a = \Delta V /$ (v-final) = (v-initial) + Δt ΔV $\Delta V = (v-final) - (v-initial)$

Chapter 3: 2D or 3D Motion (cont)

Projectile Motion

two assumptions:

- 1. The freefall acceleration (g) is constant
- 2. Air resistance is negligible

y-direction = constant acceleration motion

x-direction = constant velocity motion

Acceleration is only negative (ydirection) $g = -9.8 \text{ m/s}^2$

Constant Velocity Motion

 $x = (x-initial) + (v [x-direction]) \cdot t$ $V (y-direction) = (v-initial) [y-direction] + g \cdot t$

(y-final) = (y-initial + (v-initial) [y-direction] \cdot t + 1/2 \cdot g \cdot t²

V $(y\text{-direction})^2 = (v\text{-initial}) [y\text{-direction}]^2 + 2 \cdot g ((y\text{-final}) - (y\text{-initial}))$

V (y-direction) = (v-initial) [y-direction] + $g \cdot t$

Trig Identity

 $\sin(\Theta\Theta) = \sin\Theta\cos\Theta + \cos\Theta\sin\Theta$

Constant Speed Motion

velocity is always changing

r = radius $V = (2\pi r)^2 : 4\pi^2 r$ T = time-period

 $a = \Delta V / \Delta t$: never zero $\Delta V = (V / r) \cdot \Delta r$

Centripetal Acceleration

Ac = $(V^2) / r$ Ac = $(2\pi r)^2 / r$ Ac = $4\pi^2 r / T^2$

Tangential and Radial Acceleration

Ac = a-rad

C

By Jaco (brandenz1229)

Published 29th September, 2021. Last updated 29th September, 2021. Page 1 of 2. Sponsored by ApolloPad.com

Everyone has a novel in them. Finish

https://apollopad.com

Cheatography

Physics MidTerm 1 Cheat Sheet

by Jaco (brandenz1229) via cheatography.com/138824/cs/29292/

Chapter 3: 2D or 3D Motion (cont)

Vector A-total = Vector A-tangential + Vector A-radical A-total = $\sqrt{(A-tan)^2 + (A-rad)^2}$

Relative Motion

r' = ((v-initial) · t) - (vector-r) Vector-r = $\sqrt{(v-initial) \cdot t)^2 + (r')^2}$ Vector-V' = (v-final) - (v-initial)

Chapter 4: Newtons Laws

Superposition of Forces

Vector-R = Vector-F1 + Vector-F2

N = Net Force

 $Fx = N \cdot Rx = \sum Fx$ $cos(\Theta)$ $Ry = \sum Fy$

 $Fy = N \cdot \sin(\Theta)$

 $R = \sqrt{(Rx)^2 + Ry^2}$

Newton's 1st Law

No Force; No Acceleration; No Motion

Inertia:

the tendency of an object to resist any attempt to change its velocity

Newton's 2nd Law

Net Force = $a (x-direction) = m \cdot g$ (Fx total) / mass a (y-direction) = (Fy total) / mass

 $tan(\Theta) = y / x$

Newton's 3rd Law

Fn = Normal Force

Fy = Fn - m Fx = $m \cdot g \cdot \sin(\Theta)$ · $g \cdot \cos(\Theta)$

Chapter 5: Applying Newton's Laws

vector- $F = Fx = m \cdot ax$ $m \cdot a$

T = tension Fy= $m \cdot ay$: friction

 $y = T - m \cdot g$ Fr = Fn : Normal

Force (Fn)

No Friction $\alpha = \text{Coefficient}$ Fn = m · g Fx = T1· cos(Θ) + T2· cos(Θ)

T2· sin(Θ)

Fy = T1· $sin(\Theta)$ +

Friction

Static Friction (fs): Object not in motion

Kinetic Friction (fK): Object is in

motion

Empirical Formula µk: Coefficient of Kinetic Friction µs: Coefficient of Static Friction Static: $fs \le \mu s \cdot Fn$ Static: $fk = \mu k \cdot f$

Static: fk =

Terminal Speed

Frα v²

 V^2/r

Frαv

Uniform Fc = m ⋅ ac : m ⋅

Circular Motion Chapter 5: Applying Newton's Laws (cont)

Vertical Top: Fy = -m · (V^2 / r) Circle Bottom: Fy = μ s * m · $(g + V^2 / r)$

 $maxV = \sqrt{(fs \cdot r)} / m$ $maxV = \sqrt{\mu s \cdot g \cdot r}$

Top $T \cdot \sin(\Theta) = m \cdot ac$ **View** $ac = \tan(\Theta) \cdot g$

C

By Jaco (brandenz1229)

Published 29th September, 2021. Last updated 29th September, 2021. Page 2 of 2. Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

cheatography.com/brandenz1229/