Cheatography

Physics MidTerm 1 Cheat Sheet by Jaco (brandenz1229) via cheatography.com/138824/cs/29292/

Chapter 1 Unit(s) / Mechanics / Sig-Figs / Vectors		Chapter 1 Unit(s) / Mechanics / Sig-Figs / Vectors (cont)	Chapter 2: Motion along A Straight Line (cont)		llong A	Chapter 3: 2D or 3D Motion (cont)	
Speed = (d/t) (m/s)	d = distance : m = meters t = time : s = seconds	$tan(\Theta) = (y / x) \text{ or } (Ay / Ax) \text{ or}$ (By / Bx) $x = \hat{I} \qquad \text{Vector } A = Ax\hat{I} + Ay\hat{j}$ $y = \hat{j} \qquad \text{Vector } B = Bx\hat{I} + By\hat{j}$	Acceleratio (ΔV) / (Δt) [a is consta	()	if a > 0 (positive) if a < 0 (negative)	Projectile Motiontwo assumptions:1. The freefall acceleration (g) is constant	
1 km = 1000 m		$z = \hat{k}$	Instantaneous Acceleration =		eleration =	2. Air resistance is negligible	
1 kg = 1000 g mass = (kg) 1 hour = 3600 time = seconds (seconds) 1 mile = length = (meter) 1.609 km Volume = 1 cm ³		Vector R = Vector A + Vector B Vector R = $(Ax + Bx)\hat{1} + (Ay + By)\hat{j}$ Vector R (direction) = $(x)\hat{1} + (y)\hat{j}$ Vector R (magnitude) = $\sqrt{(x)\hat{1}^2 + (y)\hat{j}^2}$	derivative of the given equation Constant Acceleration = constant acceleration motion in 1D		en equation	<pre>y-direction = constant accele- ration motion x-direction = constant velocity motion</pre>	
			$V-final = (a \cdot t) + V-initial$ $V-final^{2} = (v-initial)^{2} + 2 \cdot a ($ $(t-final) - (t-initial))$ $\Delta x = (x-final) - (x-initial)$ $\Delta x = (v-average) \cdot (seconds)$ $\Delta x = (1/2 \cdot (V-final) + (V-initial))$ $\cdot t (seconds)$ $x-final = 1/2 ((V-initial) + (V-initial))$			Acceleration is only negative () direction) $g = -9.8 \text{ m/s}^2$	
		Quadratic Formula					
Sig Figs		$x = (-b + /- \sqrt{b^2} - 4 \cdot a \cdot c) / (2 \cdot a)$				Constant Velocity Motion	
$\pi = 3.14 (3 \text{ sigfig})$		$X = (-D + 7 - \sqrt{D} - 4 \cdot a \cdot c) / (2 \cdot a)$,	x = (x-initial) + (v [x-direction])	
$\pi = 3.14159$ (6 sigfig)		Chapter 2: Motion along A			+ (v-milial))	V (y-direction) = (v-initial) [y-dir	
Density = (mass / volume) (kg / m ³) (g / cm ³)		Straight Line			-initial) + (V-	ection] + $g \cdot t$	
= square root		One Dimensional Motion	final)) \cdot t + (x-initial) x-final = x-initial + (V-initial) \cdot t(seconds) + 1/2 \cdot a \cdot t ² Gravity (g) = -9.8 m/s ² V-final = (V-initial) + g * t (seconds) Chapter 3: 2D or 3D Motion		, ,	(y-final) = (y-initial + (v-initial)) [y] direction] $\cdot t + 1/2 \cdot g \cdot t^2$ V (y-direction) ² = (v-initial) [y-direction] ² + 2 \cdot g ((y-final) - (y-initial))	
Vector (Displacement) = $\sqrt{(x)^2+}$ (y) ²		Average Speed = (total			+ (V-initial) ·		
		distance) / (time)			$\cdot t^2$		
Total distance = x + y		Displacement = Final Point -			/s ²		
Vector A = Vector B <i>if</i> Vector A		Initial Point			- g * t	tial))	
= Vector B		Not Constant Velocity				V (y-direction) = (v-initial) [y-direction] + $g \cdot t$	
Magnitude : $\sqrt{(x)^2+(y)^2} = (Answer)$		Average Velocity (V) =) Motion	Trig Identity	
in Units) : 1 Direction		(displacement / time)	The Acceleration Vector		ector	$sin(\Theta\Theta) = sin\Thetacos\Theta + cos\Thetasin$	
Components of Vector		Average Velocity (V) = $(\Delta x / \Delta t)$	$a = \Delta V / (v-final) = (v-initial) +$			Constant Speed Motion	
	$Ax = A \cdot \cos(\Theta)$	Instantaneous Velocity =		ΔV	(*******)	velocity is always changing	
	$Ay = A \cdot \sin(\Theta)$	derivative of the given equation		$\Delta V = (v-final) - (v)$	final) - (v-ini-	$r = radius$ $V = (2\pi r)^2 : 4\pi^2 r$	
$\mathbf{A} = \sqrt{(\mathbf{A} \cdot \cos(\Theta))^2 + (\mathbf{A} \cdot \sin(\Theta))^2}$ $\Theta = \text{Angle}$ $\mathbf{x} = \cos(\Theta) \cos(\Theta) = \mathbf{A}\mathbf{x} / \mathbf{A}$		Instantaneous Velocity = ((a- final) - (a-initial)) / ((t-final)-(t-		tial)	r 1) . <i>((</i>)	T = time-period	
			∆V = (v-final) + (-(v-i- nitial))		tinal) + (-(v-i-	a = $\Delta V / \Delta t$: never zero	
$x = \cos(\Theta)$ $y = \sin(\Theta)$	$ cos(\Theta) = Ax / A $ $ sin(\Theta) = Ay / A $	initial))	Constant S	Speed Changing		$\triangle V = (V / r) \cdot \triangle r$	
		$\Delta t = (t-final) - (t-initial)$	Direction	peed on		Centripetal Acceleration	
		$\Delta x = (x-final) - (x-initial)$	a = ∆V /	(v-final) = (v-initial) +	$Ac = (V^2) / r$		
		Acceleration	Δt	ΔV	$Ac = (2\pi r)^2 / r$		
		$\Delta V = (V-final) - (V-initial)$		∆V = (v-	= (v-final) - (v-ini-	$Ac = 4\pi^2 r / T^2$	

Tangential and Radial Acceleration

Ac = a-rad

By Jaco (brandenz1229)

Published 29th September, 2021. Last updated 29th September, 2021. Page 1 of 2.

tial)

 $\Delta t = (t-final) - (t-initial)$

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

cheatography.com/brandenz1229/

Cheatography

Physics MidTerm 1 Cheat Sheet

by Jaco (brandenz1229) via cheatography.com/138824/cs/29292/

Top: Fy = -m \cdot (V² / r)

Bottom: Fy = μ s * m ·

Chapter 3: 2D or 3D Motion (cont)		Chapter 5: Applying Newton's Laws		Chapter 5: Applying Newton's Laws (cont)			
ential + Vecto		vector-F = m · a	Fx = m · ax	Vertical Circle	Top: Fy = -m \cdot (V ² / Bottom: Fy = μ s * m		
·	tan) ² + (A-rad) ²	T = tension Fy= $m \cdot ay$			$(g + V^2 / r)$		
Relative Motion r ' = ((v-initial) · t) - (vector-r)		: friction			maxV = √(fs · r) / m		
	$(v-initial) \cdot t)^2 + (r')^2$	y = T - m · g	Fr = Fn : Normal Force (Fn)		maxV = √ µs · g · r		
· ·	v-final) - (v-initial)	No Friction	α = Coefficient	Тор	$T\cdot sin(\Theta) = m\cdot ac$		
Chapter 4: Ne		$Fn = m \cdot g$	$Fx = T1 \cdot cos(\Theta) + T2 \cdot cos(\Theta)$	View	$ac = tan(\Theta) \cdot g$		
Superposition			$Fy = T1 \cdot sin(\Theta) +$				
	Vector-R = Vector-F1 + Vector-		T2· sin(Θ)				
F2		Friction					
N = Net Force	Э	Static Friction	n (fs): Object not in				
$Fx = N \cdot \cos(\Theta)$ $Fy = N \cdot \cos(\Theta)$	Rx = ∑Fx Ry = ∑Fy	motion Kinetic Frictic motion	on (fK): Object is in				
sin(Θ)							
$R = \sqrt{(Rx)^2 + Ry^2}$		Empirical	µk: Coefficient of				
Newton's 1st No Force; No Motion	Law Acceleration; No	Formula	Kinetic Friction µs: Coefficient of Static Friction Static: fs ≤ µs ·				
Inertia: the tendency of an object to resist any attempt to change its velocity			Fn Static: fk = µk · Fn				
Newton's 2nd Law		Terminal	Frαv				
Net Force =	a (x-direction) =	Speed					
m · g	(Fx total) / mass		$Fr \alpha v^2$				
	a (y-direction) = (Fy total) / mass	Uniform Circular	Fc = m · ac : m · V ² / r				
$tan(\Theta) = y / x$		Motion					
Newton's 3rd	Law						
Fn = Normal	Force						
Fy = Fn - m · g · cos(Θ)	$Fx = m \cdot g \cdot sin(\Theta)$						
	By Jaco (brandenz12)	29)	Published 29th September, 2021.				

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

cheatography.com/brandenz1229/

r, 2021. Last updated 29th September, 2021. Page 2 of 2.