Chapter 2: Motion along A Straight Line
$s=$ speed $\quad t=$ time

Total Distance
xf+xi
One Dimensional Motion

Distance	$d=s \cdot t$
Displacement	$x f-x i$
Speed	$(x f+x i) /(t f+t i)$

Not Constant Velocity

Average Velocity (xf-xi)/(tf-ti)

$x \uparrow: v+$	$a+: v \uparrow$
$x \downarrow: v-$	$a-: v \downarrow$

$x \rightarrow: v=0$
$a=0: v \rightarrow$

Instantaneous Acceleration

(vf-vi) / (tf-ti)

Constant Acceleration in 1D

$V_{f}=V_{i}+(a \cdot t)$
Constant Acceleration Final Distance
$X f=1 / 2\left(V_{f}-V_{i}\right) \cdot t$
$X_{f}=X_{i}+\left(V_{i} \cdot t\right)+1 / 2(a \cdot t)$
$a=\left(V_{f}-V_{i}\right) / t \quad t=\left(V_{f}-V_{i}\right) / a$
$V_{f}=V_{i} \cdot a^{2}$
$V_{f}{ }^{2}=V_{i}{ }^{2}+2 \cdot a(x f-x i)$
$G_{y}=-9.8 \mathrm{~m} / \mathrm{s}$

Chapter 14: Periodic Motion

Angular Frequency	$w=2 \pi f$ $2 \pi / T$
Frequency	$f=1 / T$
Period	$T=1 / f$
Restoring Force	$F_{x}=-k x$
Simple Harmonic Motion	
$k=$ Spring Constant	$x=$ displacement
$m=$ mass	

By Jaco (brandenz1229)

Chapter 14: Periodic Motion (cont)

Displacement as function $\quad \mathrm{x}=\mathrm{A} \cos (\mathrm{wt}+$ of time
$\Theta)$

Velocity as function of	$v=-w A \sin (w t$
time	$+\Theta)$
Acceleration as function	$a=-w^{2} A \cos (w t$
of time	$+\Theta)$

$\operatorname{xmax}=A[A m p l i t u d e]$	$-x \max =A$
	$[$ Amplitude]
vmax $=w A$	$-v \max =w A$
amax $=w^{2} A$	$-a \max =w^{2} A$
Equation for Simple	$a^{\prime} x=-(k / m) x$

Harmonic Motion
$k=$ restoring force

Angular Frequency for	
SHM	
Frequency for SHM	$\mathrm{w}=\sqrt{ } \mathrm{k} / \mathrm{m}$
	$\mathrm{f}=\mathrm{w} / 2 \pi$
Period for SHM	$\mathrm{f}=1 / 2 \pi \sqrt{ } \mathrm{k} / \mathrm{m}$
	$\mathrm{T}=1 / \mathrm{f}$
	$\mathrm{T}=2 \pi / \mathrm{w}$
Total Mechanical Energy	$\mathrm{E}=1 / 2 \mathrm{mvx}{ }^{2}+$
(Constant)	$1 / 2 \mathrm{kx}{ }^{2}$
	$\mathrm{E}=1 / 2 \mathrm{kA} \mathrm{A}^{2}$

Chapter 6: Work and Kinetic Energy

$1 \mathrm{~km}=1000 \mathrm{~m}$	$1 \mathrm{~kg}=1000 \mathrm{~g}$
Dot Product	$\mathrm{P}=$ Power
$\mathrm{A} \cdot \mathrm{B}=\left(\mathrm{Ai}_{\mathrm{i}} \cdot \mathrm{Bi} \mathrm{H}\right)+\left(\mathrm{Aj}_{\mathrm{j}} \cdot \mathrm{Bj}\right)$	$\mathrm{t}=\mathrm{s}$
Work $=$ Force \cdot distance	
$\mathrm{W}=\mathrm{Fx} \cdot$ distance	
$\mathrm{W}=\mathrm{F} \cdot \cos \Theta \cdot$ distance	
$\mathrm{KE}: 1 / 2 \cdot \mathrm{~m} \cdot \mathrm{v}^{2}$	$\mathrm{U}=\mathrm{m} \cdot \mathrm{g} \cdot \mathrm{h}$

Published 15th December, 2021.
Last updated 15th December, 2021.
Page 1 of 2 .

Chapter 6: Work and Kinetic Energy (cont)
Wtotal $=$ KEf - KEi
$W_{\mathrm{X}}=\mathrm{F}(\cos \Theta) \cdot \mathrm{s} \| \mathrm{W}_{\mathrm{Y}}=\mathrm{F}(\sin \Theta) \cdot \mathrm{s}$

Constant Speed

Friction $($ opposite $)=\cos \left(180^{\circ}\right)$

$P=F \cdot v$	$P=(W / t)$
Pav $=\Delta W / \Delta t$ [Average	if $F \rightarrow \& s \leftarrow=-$
Power]	W
if $F \downarrow \& s \rightarrow=0$	if $F \rightarrow \& s \rightarrow=$
	W

Force Required to
Stretch a spring
$\mathrm{F}_{\mathrm{x}}=\mathrm{k} \cdot \mathrm{x}$

Chapter 13: Newton's Law of Gravitation	
$\mathrm{GE}=6.67 \cdot 10^{-11}$	Earth Gravity Constant
$\mathrm{RE}=6.38 \cdot 10^{6} \mathrm{~m}$	Earth Radius
$\mathrm{ME}=5.972 \cdot 10^{24} \mathrm{~kg}$	Mass of Earth
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s} ; \mathrm{ag}=9.8$	$\mathrm{r}-\mathrm{RE}=\mathrm{h}$
m / s	

Gravitational Potential Energy

$\mathrm{U}=-(\mathrm{GE} \cdot \mathrm{me} \cdot \mathrm{m}) /(\mathrm{r})$

Sponsored by Readable.com

Measure your website readability!
https://readable.com

Chapter 13: Newton's Law of Gravitation (cont)
WorkDone by \quad Wgrav $=m \cdot g(r 1-r 2)$

Gravity
Wgrav $=$ GmE $\cdot \mathrm{m} \cdot(\mathrm{r} 1-\mathrm{r} 2) /(\mathrm{r} 1 \cdot \mathrm{r} 2)$
Wgrav= Gme•m - [if the body stays ($\mathrm{r} 1-\mathrm{r} 2$) / (RE^{2}) close to Earth]
Speed of the $\quad v=\sqrt{ }(G \cdot m E / r)$
Satellite
Period of Circular $\quad T=(2 \pi r / v)$
Orbit
$\mathrm{T}=2 \pi \mathrm{r}^{3 / 2} / \sqrt{ } \mathrm{G} \cdot \mathrm{mE} \quad \mathrm{T}=2 \pi r \sqrt{ }(\mathrm{r} / \mathrm{G} \cdot \mathrm{mE})$
Point Mass Outside $U_{i}=-G m \cdot m_{i} / \mathrm{s}$
a Spherical Shell
Apparent weight
; Earth's Rotation
\(\left.\begin{array}{ll}wo = true weight of \& F=force exerted by

object \& spring scale\end{array}\right]\)| $F+w 0=$ net force | $\mathrm{w}=$ apparent weight |
| :--- | :--- |
| on object | $=$ opposite of F |
| centripetal accele- | $\mathrm{w} 0-\mathrm{F}=\left(\mathrm{mv}^{2} / \mathrm{RE}\right)$ |
| ration` | |

$w=w 0-\left(m v^{2} / R E\right)$
freefall acceleration $g=g 0-\left(v^{2} / R E\right)$
Black Holes
\(\left.\begin{array}{ll}P=Density \& P=M / v

v=4 / 3 \pi R^{3} \& c=speed of light in

the vaccum\end{array}\right\}\)| Schwardzschild | $R s=2 G M / c^{2}$ |
| :--- | :--- |
| Radius | |
| $c=\sqrt{ } 2 G M / R S$ | |

Chapter 7: Potential Energy, Energy
Conservation

Y-axis

E = Mechanical Energy
Wgrav $=F \cdot s=w(y 1-y 2)$
Wgrav=(m.g.y1)-(m•g•y1)
Wgrav=Ugrav, 1-Ugrav, 2
Wgrav $=-\Delta$ Ugrav

Conservation

of Mechanical Energy
Kf-Ki = Ugrav, 1 - Ugrav, 2
Ki +Ugrav, $1=$ Kf+Ugrav, 2
$\mathrm{E}=\mathrm{K}+$ Ugrav $=$ constant
(if gravity does work)

When other forces

than Gravity do work
Wother + Wgrav $=$ Kf - Ki $_{i}$
Elastic Potential Energy
Uel $=1 / 2 k x^{2}$
Work Done a Spring
$W=1 / 2 k x 2^{2}-1 / 2 k x 1^{2}$
If Elastic does work,
total mechanical energy
is stored
Ki +Uel, $1=$ Kf + Uel, 2
Situations with Both Gravitational and Elastic Potential Energy
$\mathrm{K}_{1}+\mathrm{U}_{1}+$ Wother $=\mathrm{K}_{2}+\mathrm{U}_{2}$
The work done by all forces other than
the gravitational force or
elastic force equals the change in
total mechanical energy
$\mathrm{E}=\mathrm{K}+\mathrm{U}$ of the system
The Law of Conservation of Energy
Δ Uint $=-$ Wother
Δ Uint $=$ internal energy

Force and Potential Energy

$$
F x(x)=-d U(x) / d x
$$

Published 15th December, 2021. Last updated 15th December, 2021.
Page 2 of 2.

Chapter 14: Periodic Motion (cont.)	
The Simple Pendelum (TSP)	$\mathrm{L}=$ pendulum length
Angular Frequency TSP	$\mathrm{w}=\sqrt{ } \mathrm{k} / \mathrm{m}$
	$\mathrm{w}=\sqrt{ } \mathrm{mg} / \mathrm{L} / \mathrm{m}$
	$w=\sqrt{ } / \mathrm{L}$
Frequency TSP	$\mathrm{f}=\mathrm{w} / 2 \mathrm{~m}$
	$f=1 / 2 \pi \sqrt{\mathrm{~g}} / \mathrm{L}$
Period TSP	$\mathrm{T}=2 \mathrm{~m} / \mathrm{w}$
	$\mathrm{T}=1 / \mathrm{f}$
	$\mathrm{T}=2 \mathrm{~T} \mathrm{~V} / \mathrm{g}$

The Physical Pendulum (TPP)

$\mathrm{L}=$ angular momentum	$\mathrm{L}=\mathrm{mvr}$
w = Angular Velocity	$w=\Delta \Theta / \Delta t$
(I)nertia $=\mathrm{L} / \mathrm{w}$	
Angular Frequency TPP	$\mathrm{w}=\sqrt{ } \mathrm{mgd} / \mathrm{l}$
Period TPP	$\mathrm{T}=2 \mathrm{~T} \sqrt{ } \mathrm{I} / \mathrm{mgd}$
Damped Oscillation	
$\mathrm{b}=$ Damping Constant	
Displace of Damped	$\begin{aligned} & x=A e^{-b(2 m) t} \operatorname{cost} \\ & (w t+\Theta) \end{aligned}$
Angular Frequency of Damped	$\begin{aligned} & w^{\prime}=\sqrt{ }(k / m)-\left(b^{2} /\right. \\ & \left.4 m^{2}\right) \end{aligned}$
Force Oscillations and Resonance	
$F_{\text {max }}=$ Maximum Driving Force	$\mathrm{k}=$ constant restoring force
$\mathrm{wd}=$ Driving Angular Frequency	
$\mathrm{A}=\mathrm{Fmax}^{\text {m }} / \sqrt{ }\left(\mathrm{k}-\mathrm{mwd}^{2}\right)^{2}+\mathrm{b}^{2} \mathrm{wd}{ }^{2}$	

Sponsored by Readable.com

Measure your website readability!
https://readable.com

