Cheatography

Physics Final Cheat Sheet Cheat Sheet by Jaco (brandenz1229) via cheatography.com/138824/cs/30208/

Chapter 2: Motion alor	ng A Straight Line	
s = speed	t = time	
Total Distance	xf+xi	
One Dimensional Moti	on	
Distance	d = s·t	
Displacement	xf-xi	
Speed	(xf+xi)/(tf+ti`)	
Not Constant Velocity		
Average Velocity	(xf-xi)/(tf-ti`)	
x↑: v+	a+: v↑	
x↓: v-	a-: v↓	
x→: v=0	a=0: v→	
Instantaneous Acceleration		
(vf-vi)/(tf-ti`)		
Constant Acceleration in 1D		
Vf = Vi + (a⋅t)		
Constant Acceleration	Final Distance	
Xf=1/2(Vf-Vi) · t		
$Xf = Xi + (Vi \cdot t) + 1/2(a \cdot t)$		
a = (Vf-Vi) / t	t = (Vf-Vi) / a	
$V_f = V_i \cdot a^2$		
Vf ² = Vi ² + 2·a (xf-xi)		
Gy = -9.8 m/s		
Chapter 14: Periodic M	lotion	
	w = 2 	

Angular Frequency	w = 2πf
	2π/Τ
Frequency	f = 1 / T
Period	T = 1 / f
Restoring Force	F _X = -kx
Simple Harmonic Motion	
k = Spring Constant	x = displacement
m = mass	

By Jaco (brandenz1229)

cheatography.com/brandenz1229/

Chapter 14: Periodic Motion	(cont)
Displacement as function of time	x = Acos(wt + Θ)
Velocity as function of time	v = -wAsin(wt + ⊖)
Acceleration as function of time	a = -w ² Acos(wt + Θ)
xmax = A [Amplitude]	-xmax = A [Amplitude]
vmax = wA	-vmax = wA
$amax = w^2A$	-amax = $w^2 A$
Equation for Simple Harmonic Motion	a`x = - (k/m) x
k = restoring force	
Angular Frequency for SHM	w = √k/m
Frequency for SHM	$f = w/2\pi$
	$f = 1/2\pi\sqrt{k/m}$
Period for SHM	T = 1/f
	$T = 2\pi/w$
	$T=2\pi\sqrt{m/k}$
Total Mechanical Energy (Constant)	$E = 1/2mvx^{2} + 1/2kx^{2}$
	$E = 1/2kA^2$

Chapter 6: Work and Kinetic Energy		
1km = 1000m	1 kg = 1000g	
Dot Product	P = Power	
A·B = (Ai·Bi)+(Aj·Bj)	t = s	
Work = Force · distance		
W = F_{x} · distance		
W = F⋅cosΘ⋅distance		
$KE: 1/2 \cdot m \cdot v^2$	U = m⋅g⋅h	

Published 15th December, 2021. Last updated 15th December, 2021. Page 1 of 2.

Chapter 6: Work and Kin	etic Energy (cont)	
Wtotal = $KEf - KEi$		
W _× = F (cosΘ)⋅s W _Y = F (sinΘ)⋅s Constant Speed		
P = F·v	P = (W/t)	
$P_{av} = \Delta W / \Delta t$ [Average Power]	if F→ & s← = - W	
if $F \downarrow \& s \rightarrow = 0$	if $F \rightarrow \& s \rightarrow = W$	
Force Required to Stretch a spring		
$F_{X} = \mathbf{k} \cdot \mathbf{x}$		
Chapter 13: Newton's La	w of Gravitation	
$GE = 6.67 \cdot 10^{-11}$	Earth Gravity Constant	
RE= 6.38·10 ⁶ m	Earth Radius	
$ME = 5.972 \cdot 10^{24} \text{ kg}$	Mass of Earth	
g = 9.8 m/s; ag = 9.8 m/s	r - RE = h	
$F_{g} = (G_{E} \cdot m_{1} \cdot m_{2}) / (r^{2})$	Fg = m ⋅ a	
w = m·g	$s = r - R_E \cos \Theta$	
Gravitation and Spheri- cally Symmetric Bodies	Fg = (GE·mE·m) (r ²)	
cally Symmetric Bodies	- ()	
cally Symmetric Bodies Weight of the body at	(r ²) w = Fg = (GE·mE·m) /	
cally Symmetric Bodies Weight of the body at Earth's Surface Acceleration due to	(r^{2}) $w = F_{g} =$ $(GE \cdot mE \cdot m) /$ (RE^{2}) $g = (GE \cdot mE) / (R$	

 $U = -(GE \cdot mE \cdot m) / (r)$

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Cheatography

Physics Final Cheat Sheet Cheat Sheet by Jaco (brandenz1229) via cheatography.com/138824/cs/30208/

Chapter 13: Newton's (cont)	Law of Gravitation
WorkDone by Gravity	Wgrav = m·g(r1-r2)
Wgrav = GmE·m · (r1	-r2)/(r1·r2)
Wgrav= GmE·m · (r1-r2)/(RE ²)	[if the body stays close to Earth]
Speed of the Satellite	v = √(G•mE / r)
Period of Circular Orbit	T = (2πr / v)
$T=2\pi r^{3/2}/\sqrt{G}{\cdot}m\mathbb{E}$	$T=2\pi r\; \sqrt{(r\; /\; G{\cdot}m_{\mathbb{E}})}$
Point Mass Outside a Spherical Shell	Ui=-Gm·mi/s
Apparent weight ; Earth's Rotation	
w0 = true weight of object	F = force exerted by spring scale
F + w0 = net force on object	w = apparent weight = opposite of F
centripetal accele- ration`	w0-F = (mv^2 / RE)
	$w = w_0 - (mv^2 / R_E)$
freefall acceleration	$g = g_0 - (v^2 / R_E)$
Black Holes	
P = Density	P = M / v
$v = 4/3\pi R^3$	c = speed of light in the vaccum
Schwardzschild Radius	$R_{\rm S}$ = 2GM / c^2
c = √2GM / R≲	

Chapter 7: Potential Energy, Energy Conservation
Y-axis E = Mechanical Energy
$Wgrav = F \cdot s = w(y_1 - y_2)$
Wgrav=(m·g·y1)-(m·g·y1)
Wgrav=Ugrav,1-Ugrav,2
Wgrav =-∆U grav
Conservation of Mechanical Energy
Kf-Ki = Ugrav,1 - Ugrav,2
Ki+Ugrav,1=Kf+Ugrav,2
E = K + Ugrav = constant
(if gravity does work)
When other forces than Gravity do work
Wother + Wgrav = Kf - Ki
Elastic Potential Energy
$Uel = 1/2kx^2$
Work Done a Spring
$W = 1/2kx^2 - 1/2kx^2$
If Elastic does work, total mechanical energy is stored
Ki+Uel, 1=Kf+Uel, 2
Situations with Both Gravitational
and Elastic Potential Energy
K1+U1+Wother=K2+U2
The work done by all forces other than the gravitational force or elastic force equals the change in total mechanical energy E = K + U of the system
The Law of Conservation
of Energy
ΔU int = -Wother ΔU int = internal energy
Force and Potential Energy
$F_{X}(x) = - dU(x) / dx$

By Jaco (brandenz1229)

Published 15th December, 2021. Last updated 15th December, 2021. Page 2 of 2.

Chapter 14: Periodic Motion (cont.)	
The Simple	L = pendulum
Pendelum (TSP)	length
Angular Frequency TSP	w = $\sqrt{k/m}$
	w = \sqrt{mg} / L /m
	w = $\sqrt{g/L}$
Frequency TSP	$f = w/2\pi$
	f = $1/2\pi \sqrt{g/L}$
Period TSP	$T = 2\pi/w$
	T = 1/f
	$T = 2\pi\sqrt{L/g}$
The Physical Pendulum (TPP)	
L = angular momentum	L = mvr
w = Angular Velocity	$w = \Delta \Theta / \Delta t$
(I)nertia = L / w	
Angular Frequency TPP	w = \sqrt{mgd} / I
Period TPP	T = $2\pi \sqrt{I}$ / mgd
Damped Oscillation	
b = Damping Constant	
Displace of Damped	$x = Ae^{-b(2m)t} \cos t$ (wt + Θ)
Angular Frequency of Damped	w' = $\sqrt{(k/m)} - (b^2 / 4m^2)$
Force Oscillations and Resonance	
Fmax = Maximum	k = constant
Driving Force	restoring force
wd = Driving Angular Frequency	
$A = F_{\text{max}} / \sqrt{(k - mwd^2)^2}$	+ $b^2 w d^2$

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

cheatography.com/brandenz1229/