

Physics Final Cheat Sheet Cheat Sheet by Jaco (brandenz1229) via cheatography.com/138824/cs/30208/

Chapter 2: Motion al	ong A Straight Line
s = speed	t = time
Total Distance	xf+xi
One Dimensional Motion	
Distance	d = s·t
Displacement	xf-xi
Speed	(xf+xi)/(tf+ti`)
Not Constant Velocity	
Average Velocity	(xf-xi)/(tf-ti`)
x↑: v+	a+: v↑
x↓: v-	a-: v↓
x→: v=0	a=0: v→
Instantaneous Acceleration	
(vf-vi)/(tf-ti`)	
Constant Acceleration in 1D	
Vf = Vi + (a·t)	
Constant Acceleration Final Distance	
$Xf = 1/2(Vf-Vi) \cdot t$	
$Xf = Xi + (Vi \cdot t) + 1/2(a \cdot t)$	
a = (Vf-Vi) / t	t = (Vf-Vi) / a
$Vf = Vi \cdot a^2$	
$V_f^2 = V_i^2 + 2 \cdot a (x_f^2 + 2 \cdot a)$	-xi)

Chapter 14: Periodic Motion		
Angular Frequency	w = 2πf 2π/T	
Frequency	f = 1 / T	
Period	T = 1 / f	
Restoring Force	$F_{\times} = -kx$	
Simple Harmonic Motion		
k = Spring Constant	x = displacement	
m = mass		

 $G_{y} = -9.8 \text{ m/s}$

Chapter 14: Periodic Motion	n (cont)
Displacement as function of time	$x = A\cos(wt + \Theta)$
Velocity as function of time	v = -wAsin(wt + ⊖)
Acceleration as function of time	$a = -w^2 A \cos(wt + \Theta)$
xmax = A [Amplitude]	-xmax = A [Amplitude]
vmax = WA	-vmax = wA
$amax = w^2A$	$-amax = w^2A$
Equation for Simple Harmonic Motion	a'x = -(k/m) x
k = restoring force	
Angular Frequency for SHM	w = √k/m
Frequency for SHM	$f = w/2\pi$
	$f=1/2\pi\sqrt{k/m}$
Period for SHM	T = 1/f
	$T = 2\pi/w$
	$T=2\pi\sqrt{m/k}$
Total Mechanical Energy (Constant)	$E = 1/2 \text{mvx}^2 + 1/2 \text{kx}^2$
	$E = 1/2kA^2$

Chapter 6: Work and Kinetic Energy		
1km = 1000m	1 kg = 1000g	
Dot Product	P = Power	
$A \cdot B = (A_{\dot{1}} \cdot B_{\dot{1}}) + (A_{\dot{1}} \cdot B_{\dot{1}})$	t = s	
Work = Force ⋅ distance		
W = F _x ⋅ distance		
W = F⋅cosΘ⋅distance		
KE: 1/2·m·v ²	U = m⋅g⋅h	

Chapter 6: Work and Kinetic	Energy (cont)	
Wtotal = KEf - KEi		
$W_X = F(\cos\Theta)\cdot s W_Y = F(\sin\Theta)\cdot s$		
Constant Speed		
Friction (opposite) = cos(180°)		
P = F⋅v	P = (W/t)	
$P_{\text{av}} = \Delta W / \Delta t$ [Average	if F→ & s← = -	
Power]	W	
if $F \downarrow \& s \rightarrow = 0$	if $F \rightarrow \& s \rightarrow =$	
	W	
Force Required to		
Stretch a spring		
$F_X = k \cdot x$		
Chanter 13: Newton's Law o	f Gravitation	

Chapter 13: Newton's Law of Gravitation	
GE= 6.67·10 ⁻¹¹	Earth Gravity Constant
$RE = 6.38 \cdot 10^6 \text{ m}$	Earth Radius
$ME = 5.972 \cdot 10^{24} \text{ kg}$	Mass of Earth
g = 9.8 m/s; ag = 9.8 m/s	r - RE = h
$Fg = (GE \cdot m1 \cdot m2) / (r^2)$	$Fg = m \cdot a$
w = m⋅g	$s=r-R\mathbb{E}\ cos\Theta$
Gravitation and Spherically Symmetric Bodies	$F_g = (GE \cdot mE \cdot m) / (r^2)$
Weight of the body at Earth's Surface	$w = F_g =$ $(Ge \cdot me \cdot m) /$ (Re^2)
	g = (GE⋅mE) / (R
Acceleration due to Gravity	\mathbb{E}^2)
	, ,

By **Jaco** (brandenz1229)

Published 15th December, 2021. Last updated 15th December, 2021. Page 1 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

 $U = -(GE \cdot mE \cdot m) / (r)$

cheatography.com/brandenz1229/

Physics Final Cheat Sheet Cheat Sheet by Jaco (brandenz1229) via cheatography.com/138824/cs/30208/

Chapter 13: Newton's (cont)	Law of Gravitation
WorkDone by	$W_{grav} = m \cdot g(r1 - r2)$
Gravity	
$W_{grav} = GmE \cdot m \cdot (r)$	-r2)/(r1·r2)
Wgrav= GmE⋅m・	[if the body stays
$(r1-r2) / (RE^2)$	close to Earth]
Speed of the	$v = \sqrt{(G \cdot mE / r)}$
Satellite	
Period of Circular Orbit	$T = (2\pi r / v)$
$T=2\pi r^{3/2}/\sqrt{G}{\cdot}m{\mathbb E}$	$T = 2\pi r \sqrt{(r / G \cdot m_E)}$
Point Mass Outside	Ui=-Gm·mi/s
a Spherical Shell	
Apparent weight	
; Earth's Rotation	
wo = true weight of	F = force exerted by
object	spring scale
F + w0 = net force	w = apparent weight
on object	= opposite of F
centripetal accele- ration`	$w0-F = (mv^2 / RE)$
	$w = w_0 - (mv^2 / RE)$
freefall acceleration	$g = g_0 - (v^2/RE)$
Black Holes	
P = Density	P = M / v
$v = 4/3\pi R^3$	c = speed of light in
	the vaccum
Schwardzschild Radius	$R_S = 2GM/c^2$

Chapter 7: Potential Energy, Energy Conservation	
Y-axis	
E = Mechanical Energy	
$Wgrav = F \cdot s = w(y1-y2)$	
$Wgrav=(m\cdot g\cdot y1)-(m\cdot g\cdot y1)$	
Wgrav=Ugrav,1-Ugrav,2	
Wgrav=-ΔUgrav	
Conservation of Mechanical Energy	
Kf-Ki = Ugrav, 1 - Ugrav, 2	
Ki+Ugrav, 1=Kf+Ugrav, 2	
E = K + Ugrav = constant	
(if gravity does work)	
When other forces than Gravity do work	
Wother + Wgrav = Kf - Ki	
Elastic Potential Energy	
$Uel = 1/2kx^2$	
Work Done a Spring	
$W = 1/2kx2^2 - 1/2kx1^2$	
If Elastic does work,	
total mechanical energy is stored	
Ki+Uel,1=Kf+Uel,2	
Situations with Both Gravitational and Elastic Potential Energy	
K1+U1+Wother=K2+U2	
The work done by all forces other than the gravitational force or elastic force equals the change in total mechanical energy $E = K + U \text{ of the system}$	
The Law of Conservation	
of Energy	

Chapter 14: Periodic Motion (cont.)		
The Simple	L = pendulum	
Pendelum (TSP)	length	
Angular Frequency TSP	$w = \sqrt{k/m}$	
	$w = \sqrt{mg} / L /m$	
	$w = \sqrt{g/L}$	
Frequency TSP	$f = w/2\pi$	
	$f=1/2\pi\;\sqrt{g/L}$	
Period TSP	$T = 2\pi/w$	
	T = 1/f	
	$T = 2\pi\sqrt{L/g}$	
The Physical Pendulum (TPP)		
L = angular momentum	L = mvr	
w = Angular Velocity	$w = \Delta\Theta / \Delta t$	
(I)nertia = L / w		
Angular Frequency TPP	w = √mgd / I	
Period TPP	$T=2\pi \ \sqrt{\ I\ /\ mgd}$	
Damped Oscillation		
b = Damping Constant		
Displace of Damped	$x = Ae^{-b(2m)t} cost$ (wt + Θ)	
Angular Frequency of Damped	$w' = \sqrt{(k/m) - (b^2 / 4m^2)}$	
Force Oscillations and Resonance		
Fmax = Maximum	k = constant	
Driving Force	restoring force	
wd = Driving Angular Frequency		
$A = F_{\text{max}} / \sqrt{(k - mwd^2)^2}$	$+ b^2 w d^2$	

 $c = \sqrt{2GM / Rs}$

By Jaco (brandenz1229)

Published 15th December, 2021. Last updated 15th December, 2021. Page 2 of 2.

 $\Delta U \texttt{int} = \text{-Wother}$ $\Delta U \texttt{int} = \text{internal energy}$ Force and Potential Energy

 $F_{\times}(x) = -dU(x) / dx$

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com