Cheatography

MidTerm 3 by Jaco (brandenz1229) via cheatography.com/138824/cs/29996/

Chapter 9

Angular Velocity and Acceleration		
Θ = angle (radians)	s = length	
r = radius	$90^{\circ} = \pi/2 \text{ rad}$	
$\Theta = (s/r)$	$s = r \cdot \Theta$	
1 rad = (360 ^o / 2π) = 57.3 ^o	$180^{\circ} = \pi \text{ rad}$	
Angular Velocity	(1st Derivative)	
$\omega = (\Theta_{f} - \Theta_{i}) / (t_{f} - t_{i})$	ω = "velocity"	
1 rev/s = 2π rad/s	1 rev/min = 1 rpm = 2π/60 rad/s	
Angular Acceleration	(2nd Deriva- tive)	
α = (ωf- ωi) / (tf-ti)	α = "accelerat- ion"	
Rotation w/ Constant Angula	ar Acceleration	
$\alpha f = (\omega f - \omega i) / (t - 0)$	αf = constant	
$\omega f = \omega i + \alpha f \cdot t$		
$\Theta_{\text{f-}}\Theta_{\text{i}} = 1/2(\omega_{\text{i}}+\omega_{\text{f}})\cdot t$		
$\Theta_{f} = \Theta_{i} + (\omega_{i} \cdot t) + 1/2 (\alpha_{f} + 1/2)$	$\cdot t^2$)	
$\omega \texttt{f}^2 = \omega \texttt{i}^2 + 2 \cdot \alpha \texttt{f} (\Theta \texttt{f} - \Theta \texttt{i})$		
Relating Linear and Angular Kinematics	$K = 1/2(m \cdot v^2)$	
Linear Speed in Rigid- Body Rotation	$s = r \cdot \Theta$	
Linear Speed	$v = r \cdot \omega$	
Linear Acceleration in Rigid-Body Rotation	$a \tan = r \cdot \alpha$	
Centripetal Component of Acceleration	$a_{rad} = (v^2/r) = \omega^2 \cdot r$	
Energy in Rotational Motion	$K_{E}: 1/2 \cdot m \cdot v^2 = 1/2 \cdot m \cdot r^2 \cdot \omega^2$	
$K = 1/2 \cdot m \cdot r^2 \cdot \omega^2$	$I = m \cdot r^2$	
Gravitational Potential Energy for an Extended Body	U = M·g·ycm	

Chapter 9 (cont)		
Moment of Inertia	$I_{p}=I_{cm}+Md^{2}$	
Chapter 9 Cont:		
Rotational Kinetic Energy	K = Joules	
$K = 1/2 \cdot I \cdot \omega^2$	R = Radius	
M = mass pivoted about a	n axis	
Perpendicular to the Rod	$I = (M \cdot L^2) / 3$	
Slender Rod (Axis Center)	$I = 1/12 M \cdot L^2$	
Slender Rod (Axis End)	$I = 1/3M \cdot L^2$	
Rectangular Plate (Axis Center)	I = 1/12M⋅(a ² +b ²)	
Rectangular Plate (Axis End)	$I = 1/3M \cdot (a^2)$	
Hallow Cylinder	I = 1/2M(Ri ² +R f ²)	
Solid Cylinder	$I = 1/2MR^2$	
Hollow Cylinder (Thin)	$I = MR^2$	
Solid Sphere	$I = 2/5MR^2$	
Hollow Sphere (Thin)	$I = 2/3MR^2$	
Chapter 11: Equilibrium and Elasticity		
1st Condition of Equilibriur (at rest)	m ΣF = 0	
2nd Condition of Equilibriu (nonrotating)	m Στ = 0	
Center of Gravity	rcm = (m1·r 1)/m1	

1st Condition of Equilibrium
(at rest) $\Sigma F = 0$ 2nd Condition of Equilibrium
(nonrotating) $\Sigma T = 0$ Center of Gravity $r_{\rm Cm} = (m1 \cdot r_{1}) / m1$ Solving Rigid-Body Equili-
brium Problems $\Sigma F x = 0$
 $\Sigma F y = 0$ 1st Condition
 $\Sigma F y = 0$ $\Sigma F x = 0$
 $\Sigma F y = 0$ 2nd Condition (Forces xy-
plane) $\Sigma T z = 0$

Published 1st December, 2021. Last updated 1st December, 2021. Page 1 of 2.

Chapter 11: Equilibrium and Elasticity (cont)		
Stress, Strain, and Elastic Moduli	Stress = Force Applied to deform a body Strain = how much deform- ation	
Hooke's Law	(Stress / Strain) = Elastic Modulus	
A = Area	F = Magnitude of Force	
Tensile Stress	F/A	
1 Pascal = Pa = 1 N/m ²	1 psi = 6895 Pa	
I = length	1 Pa = 1.450 · 10 ⁴	
Tensile Strain	(lf-li)/(li)	
Young Modulus	(Tensile Stress) / (Tensile Strain)	
Pressure	p = F (Force Fluid is Applied) / A (Area which force is exerted)	
Bulk Stress	(pf-pi)	
Bulk Strain	(Vf-Vi)/(Vi)	
Bulk Modulus	Bulk Stress / Bulk Strain	

Chapter 10: Dynamics of Rotational Motion

Torque	
F = Magnitude of F	= Magnitude Symbol
$\tau = F \cdot I = r \cdot F \cdot \sin \Theta = F \tan r$	L = lever arm of F
τ = r x F	
Torque and Angular Acceler Body	ation for a Rigid
Newtons 2nd Law of Tangential Component	Ftan = m1·a1
Rotational analog of Newton's second law for a rigid body	
$\Sigma_{TZ} = I \cdot \alpha_Z$	z = rigid body
	about z-axis

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

By Jaco (brandenz1229)

cheatography.com/brandenz1229/

Cheatography

Chapter 10: Dynamics of Rotational Motion (cont)		
Combined Translation and Rotation: Energy Relationships		
$K = 1/2M \cdot v^2 + 1/2 \cdot I \cdot \omega^2$		
Rolling without Slipping	v = R·ω	
Combined Translation and Ro Dynamics	tation:	
Rotational Motion about the center of mass	$\Sigma_{TZ} = I \cdot \alpha_Z$	
Work and Power in Rotational Motion	F = M ⋅ a	
When it rotates from $\Theta \tt i$ to $\Theta \tt f$	W = ∫ (Θf to Θi)τf dΘ	
When the torque remains constant while angle changes	W = τf(Θf to Θi)	
Total WorkDone on rotating rigid body	W = 1/2(ωf ²) - 1/2(ωi ²)	
Power due to torque on rigid body	$P = T_Z \cdot \omega_Z$	
Angular Momentum	$L = r x p (r x m \cdot v)$	
Angular Momentum of a Rigid Body	L= mi·ri ² ·ω	
Chapter 11: Equilibrium and Elasticity (cont.)		
F = Force acting tangent to the surface divided by the		

	the surface divided by the Area
01 01	
Shear Stress	F/A
h = transverse	x = relative displacement
dimension	(empty) [smaller]
[bigger]	
Shear Strain	x / h

By Jaco (brandenz1229)

cheatography.com/brandenz1229/

Published 1st December, 2021. Last updated 1st December, 2021. Page 2 of 2. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com