MidTerm 3
by Jaco (brandenz1229) via cheatography.com/138824/cs/29996/

Chapter 9	
Angular Velocity and Acceleration	
$\Theta=$ angle (radians)	$\mathrm{s}=$ length
$r=$ radius	$90^{\circ}=\pi / 2 \mathrm{rad}$
$\Theta=(\mathrm{s} / \mathrm{r})$	$s=r \cdot \Theta$
$\begin{aligned} & 1 \mathrm{rad}=\left(360^{\circ} / 2 \pi\right)= \\ & 57.3^{\circ} \end{aligned}$	$180^{\circ}=\pi \mathrm{rad}$
Angular Velocity	(1st Derivative)
$\omega=\left(\Theta_{\mathrm{f}}-\Theta_{i}\right) /(\mathrm{t}-\mathrm{ti})$	$\omega=$ "velocity"
$1 \mathrm{rev} / \mathrm{s}=2 \mathrm{rad} / \mathrm{s}$	$\begin{aligned} & 1 \mathrm{rev} / \mathrm{min}=1 \\ & \mathrm{rpm}=2 \pi / 60 \\ & \mathrm{rad} / \mathrm{s} \end{aligned}$
Angular Acceleration	(2nd Derivative)
$\alpha=(\omega f-\omega i) /(t f-t i)$	```a= "accelerat- ion"```
Rotation w/ Constant Angular Acceleration	
$\alpha f=(\omega f-\omega i) /(t-0)$	$\alpha_{ \pm}=$constant
$\omega f=\omega i+\alpha f \cdot t$	
$\Theta_{f}-\Theta_{i}=1 / 2(\omega i+\omega f) \cdot \mathrm{t}$	
$\Theta_{f}=\Theta_{i}+\left(\omega_{i} \cdot t\right)+1 / 2\left(\alpha f \cdot t^{2}\right)$	
$\omega f^{2}=\omega i^{2}+2 \cdot \alpha \pm(\Theta f-\Theta i)$	
Relating Linear and Angular Kinematics	$K=1 / 2\left(m \cdot v^{2}\right)$
Linear Speed in Rigid- Body Rotation	$s=r \cdot \Theta$
Linear Speed	$v=r \cdot \omega$
Linear Acceleration in Rigid-Body Rotation	atan $=r \cdot \alpha$
Centripetal Component of Acceleration	$\begin{aligned} & \operatorname{arad}=\left(v^{2} / r\right)= \\ & \omega^{2} \cdot r \end{aligned}$
Energy in Rotational Motion	$\begin{aligned} & \mathrm{KE}: 1 / 2 \cdot m \cdot v^{2}= \\ & 1 / 2 \cdot m \cdot r^{2} \cdot \omega^{2} \end{aligned}$
$K=1 / 2 \cdot m \cdot r^{2} \cdot \omega^{2}$	$\mathrm{I}=\mathrm{m} \cdot \mathrm{r}^{2}$
Gravitational Potential Energy for an Extended Body	$\mathrm{U}=\mathrm{M} \cdot \mathrm{g} \cdot \mathrm{ycm}$

Chapter 9 (cont)	
Moment of Inertia	$\mathrm{lp}=\mathrm{l}_{\mathrm{cm}}+\mathrm{Md}^{2}$
Chapter 9 Cont:	
Rotational Kinetic Energy	K = Joules
$K=1 / 2 \cdot 1 \cdot w^{2}$	$\mathrm{R}=$ Radius
$\mathrm{M}=$ mass pivoted about an axis	
Perpendicular to the Rod	$\mathrm{I}=\left(\mathrm{M} \cdot \mathrm{L}^{2}\right) / 3$
Slender Rod (Axis Center)	$\mathrm{I}=1 / 12 \mathrm{M} \cdot \mathrm{L}^{2}$
Slender Rod (Axis End)	$I=1 / 3 M \cdot L^{2}$
Rectangular Plate (Axis Center)	$\begin{aligned} & I= \\ & 1 / 12 M \cdot\left(a^{2}+b^{2}\right) \end{aligned}$
Rectangular Plate (Axis End)	$\mathrm{I}=1 / 3 \mathrm{M} \cdot\left(\mathrm{a}^{2}\right)$
Hallow Cylinder	$\begin{aligned} & I=1 / 2 M\left(R i^{2}+R\right. \\ & \left.f^{2}\right) \end{aligned}$
Solid Cylinder	$\mathrm{I}=1 / 2 \mathrm{MR} \mathrm{R}^{2}$
Hollow Cylinder (Thin)	$\mathrm{I}=\mathrm{MR}^{2}$
Solid Sphere	$\mathrm{I}=2 / 5 \mathrm{MR}^{2}$
Hollow Sphere (Thin)	$\mathrm{I}=2 / 3 \mathrm{MR}^{2}$

Chapter 11: Equillbrium and Elasticity	
1st Condition of Equilibrium (at rest)	$\Sigma \mathrm{F}=0$
2nd Condition of Equilibrium (nonrotating)	$\Sigma \mathrm{T}=0$
Center of Gravity	$\mathrm{rcm}=(\mathrm{m} 1 \cdot \mathrm{r}$
$1) / \mathrm{m} 1$	

Solving Rigid-Body Equili- $\quad \Sigma \mathrm{F}_{\mathrm{x}}=0$
brium Problems
\(\left.\begin{array}{ll}1st Condition \& \Sigma F_{x}=0 \\

\Sigma F_{y}=0\end{array}\right\}\)| 2nd Condition (Forces $x y-$ | $\Sigma \mathrm{T}_{\mathrm{z}}=0$ |
| :--- | :--- |
| plane) | |

Published 1st December, 2021.
Last updated 1st December, 2021.
Page 1 of 2.

Chapter 11: Equilibrium and Elasticity (cont)

Chapter 10: Dynamics of Rotational Motion

Torque

$\mathrm{F}=$ Magnitude of F	$\\|\\|=$
	Magnitude Symbol
$\mathrm{T}=\mathrm{F} \cdot \mathrm{I}=\mathrm{r} \cdot \mathrm{F} \cdot \sin \Theta=$ Ftanr F	$\mathrm{L}=$ lever arm of F

$\mathrm{T}=\|\mathrm{r}\| \mathrm{x}\|\mathrm{F}\|$
Torque and Angular Acceleration for a Rigid Body
Newtons 2nd Law of \quad Ftan $=\mathrm{m} 1 \cdot \mathrm{a} 1$ Tangential Component

Rotational analog of Newton's second law for a rigid body
$\Sigma \mathrm{T} z=1 \cdot \alpha z$
$z=$ rigid body about z-axis

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish
Yours!
https://apollopad.com

Chapter 10: Dynamics of Rotational Motion (cont)		
Combined Translation and Rotation: Energy Relationships		
$K=1 / 2 M \cdot v^{2}+1 / 2 \cdot \\| \cdot \omega^{2}$		
Rolling without Slipping	$v=R \cdot \omega$	
Combined Translation and Rotation: Dynamics		
Rotational Motion about the center of mass	$\Sigma \mathrm{T} z=1 \cdot \alpha \mathrm{z}$	
Work and Power in Rotational Motion	$F=M \cdot a$	
When it rotates from Θ_{i} to Θf	$\begin{aligned} & W=\int(\Theta f \\ & \text { to } \Theta i) T f \\ & d \Theta \end{aligned}$	
When the torque remains constant while angle changes	$\begin{aligned} & W=T £(\Theta f \\ & \text { to } \Theta i) \end{aligned}$	
Total WorkDone on rotating rigid body	$\begin{aligned} & W= \\ & 1 / 2\left(\omega f^{2}\right)- \\ & 1 / 2\left(\omega i^{2}\right) \end{aligned}$	
Power due to torque on rigid body	$P=\tau z \cdot \omega z$	
Angular Momentum	$\begin{aligned} & L=r x p(r x \\ & m \cdot v) \end{aligned}$	
Angular Momentum of a Rigid Body	$\begin{aligned} & \mathrm{L}= \\ & \mathrm{mi}_{\mathrm{i} \cdot \mathrm{ri}^{2} \cdot \omega} \end{aligned}$	

Chapter 11: Equilibrium and Elasticity (cont.)	
	F = Force acting tangent to the surface divided by the Area
Shear Stress	F/A
$\mathrm{h}=$ transverse dimension [bigger]	$x=$ relative displacement (empty) [smaller]
Shear Strain	x / h

?

By Jaco (brandenz1229)

Published 1st December, 2021.
Last updated 1st December, 2021
Page 2 of 2.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

