## ODE

## Boundary Value Problem

values of dependent variable at more than one value of the independent variable

Turn it into an initial condition problem

## Shooting Method

guess initial condition for the arbitrary variable $z=d T / d x$
linear interpolation if you can
initial conditions satisfy boundary values

## Finite Methods

approximate the derivative using one of the finite methods
reduce it to a system of linear equations
more computationally efficient than shooting method
shooting method: 1- solve RK4 multiple times 2interpolate

## Interpolation

fit 1 function to all points
given points without function
increase accuracy, decrease step size or increase order

3 pts $f(x)=a x^{\wedge} 2+b x+c-$ substitute points system of linear equations (GE- GJ- inverse)
Alternative function representation
$f(x)=b 0+b 1(x-x 0)+b 2(x-x 0)(x-x 1)+b 3(x-x 0)$ $(x-x 1)(x-x 2)+\ldots$
based on Taylor series
bs represent the slopes
efficient - quick

## PDE

more than 1 independent variable

## Elliptic Model

Laplace equation if equal to 0
Poisson's equation if not equal to 0
$d^{2} T / d x^{2}+d^{2} T / d y^{2}=0$
not affected by time $--x, y$ independent

## Parabolic Model

$d T / d t=K^{\prime}\left(d^{2} T / d x^{2}\right)$
time is a factor --x,t independent

## Hyperbolic Model

$d^{2} y / d x^{2}=\left(1 / c^{2}\right)\left(d^{2} y / d t^{2}\right)$
waveform --x, t are independent

## Elliptic Model

1 boundary values --> closed system or 2 secondary variable
maximum of 5 non-zeros per equation
Gauss siedel: does not take into account zeros + DDS
centered difference
Can i find one independent of other values? NO
without borders unknowns increase
centered difference equations (depends on order)
flux : derivative - insulated (=0)

## Splines

fit a function to each interval
used for large datapoints--to avoid kinks

## Linear Splines

$f(x)=f(x o)+m(x-x o)$
interval surrounds point
issues:
linearizing a non-linear function, oversimplifies behavior
discontinuity at the intermediate points - slope
is no the same on either side

## Quadratic Splines

Published 20th May, 2018.
Last updated 20th May, 2018.
Page 1 of 1 .

## Splines (cont)

minimum of 2 intervals or 3 points
$f(x)=a 1 x^{\wedge} 2+b 1 x+c 1$
$3 n$ unknowns -- n is \# of intervals
(2n equations ) substitute points in formulas
( $n$-1 equations) establish continuity with the slope at the intermediate points
assumption: a1=0
minimal effect on other intervals
under determined system by 1 equation intermediate points are not independent

System of linear equations --do not use iterative methods (not DDS)
all functions are dependent

## Cubic Splines

most popular method
minimum of 3 intervals or 4 points
$4 n$ equations - undetermined by 2 equations assume 2 nd derivative of outer points is 0

Alternative - Lagrange
(xi-xi-1) $f^{\prime \prime}(x i-1)+2(x i+1-x i-1) f^{\prime \prime}(x i)+(x i+1-x i)$ $f^{\prime \prime}(x i+1)=(6 /(x i+1-x i))[f(x i+1)-f(x i)]+(6 /(x i-x i-$ 1)) $[f(x i-1)-f(x i)]$
$f(x)=\left(f^{\prime \prime}(x i-1) / 6(x i-x i-1)\right)(x i-x)^{\wedge} 3+\left(f^{\prime \prime}(x i) / 6(x i-\right.$ $x i-1))(x-x i-1)^{\wedge} 3+[(f(x i-1) /(x i-x i-1))-(f "(x i-1)(x i$ $-x i-1) / 6)](x i-x)+[(f(x i) /(x i-x i-1))-(f "(x i)(x i-x i-$ 1)/6)] (x-xi-1)
solve all second derivatives first all related by continuity

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

