Cheatography

Analysis Part4 Cheat Sheet by Boko via cheatography.com/55472/cs/15688/

Boundary Value Problem

values of dependent variable at more than one value of the independent variable

Turn it into an initial condition problem

Shooting Method

guess initial condition for the arbitrary variable

z = dT/dx

linear interpolation if you can

initial conditions satisfy boundary values

Finite Methods

approximate the derivative using one of the finite methods

reduce it to a system of linear equations

more computationally efficient than shooting method

shooting method: 1- solve RK4 multiple times 2interpolate

Interpolation

fit 1 function to all points

given points without function

increase accuracy, decrease step size or increase order

3 pts f(x)=ax^2+bx+c - substitute points system of linear equations (GE- GJ- inverse)

Alternative function representation

f(x) = b0 + b1(x - x0) + b2(x - x0)(x - x1) + b3(x - x0)(x-x1)(x-x2) +...

based on Taylor series

bs represent the slopes

efficient - quick

PDE

more than 1 independent variable Elliptic Model Laplace equation if equal to 0 Poisson's equation if not equal to 0 $d^{2}T/dx^{2} + d^{2}T/dy^{2} = 0$ not affected by time --x,y independent **Parabolic Model** $dT/dt = K' (d^2T/dx^2)$ time is a factor --x,t independent Hyperbolic Model $d^2y/dx^2 = (1/c^2) (d^2y/dt^2)$ waveform --x, t are independent Elliptic Model 1 boundary values --> closed system or 2 secondary variable maximum of 5 non-zeros per equation Gauss siedel: does not take into account zeros + DDS centered difference Can i find one independent of other values? NO

without borders unknowns increase

centered difference equations (depends on order)

flux : derivative - insulated (=0)

Splines

fit a function to each interval

used for large datapoints -- to avoid kinks

Linear Splines

f(x) = f(xo) + m(x-xo)

interval surrounds point

issues:

linearizing a non-linear function, oversimplifies behavior

discontinuity at the intermediate points - slope is no the same on either side

Quadratic Splines

Published 20th May, 2018. Last updated 20th May, 2018. Page 1 of 1.

Splines (cont)

Splines (cont)
minimum of 2 intervals or 3 points
f(x)= a1x^2 +b1x+c1
3n unknowns n is # of intervals
(2n equations) substitute points in formulas
(n-1 equations) establish continuity with the slope at the intermediate points
assumption: a1=0
minimal effect on other intervals
under determined system by 1 equation
intermediate points are not independent
System of linear equationsdo not use iterative methods (not DDS)
all functions are dependent
Cubic Splines
most popular method
minimum of 3 intervals or 4 points
4n equations - undetermined by 2 equations
assume 2nd derivative of outer points is 0
Alternative - Lagrange
$ \begin{array}{l} (xi - xi - 1) \ f''(xi - 1) + 2(xi + 1 \ -xi - 1) \ f''(xi) \ +(xi + 1 \ -xi) \\ f''(xi + 1) \ = \ (6/(xi + 1 \ -xi)) \ [f(xi + 1) - f(xi)] \ + \ (6/(xi \ -xi - 1)) \ [f(xi - 1) \ -f(xi)] \end{array} $
$\begin{array}{l} f(x)=(f''(xi-1)/6(xi-xi-1))\;(xi-x)^3+(f''(xi)/6(xi-xi-1))\;(x-xi-1)^3+[\;(f(xi-1)/(xi-xi-1))-(f''(xi-1)(xi-xi-1)/6)\;]\;(xi-x)+\;[\;(f(xi)/(xi-xi-1))-(f''(xi)(xi-xi-1)/6)\;]\;(x-xi-1) \end{array}$
solve all second derivatives first

all related by continuity

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

By Boko cheatography.com/boko/