Cheatography

Analysis Part1-2 Cheat Sheet by Boko via cheatography.com/55472/cs/15052/

Systems of Linear Equations - Methods				
Elimination Methods	Inverse Method	Iterative Methods		
Need scale system because system becomes more sensitive to round offs	solve multiple times for different constants	make unknowns the subject of equations		
Maximum Coefficients on Main diagonal	Advantages	default all unknowns are 0		
Gauss Elimination	calculate inverse once	Dominant Diagonal System DDS		
1 forward elimination 2 back substitution	iterate for dynamic cases	DDS ensures convergence		
eliminate what is below main diagonal	Limitations	Gauss Seidel		
Issues	matrix has to have a solution	use updated values in equations		
Zero at pivot - solution: switch rows	under-determined systems (# equations<#unknown s)	if system is converging		
ill conditioned system - round off	do not have an inverse - infinite solutions	Jacobi		
Limitations	Augmentation	update values at the end of each iteration		
Lengthy- Cumbersome- Time consuming	[A:I] -> [I:A-]	help overcome divergence		
2 distinct steps	equations have to be linearly independent	Relaxation		
Gauss Jordan		Xinew= ~Xinew + (1-~)Xiold		
eliminate what is above and below the main diagonal		0<~<2		
translate from coefficient matrix to identity matrix		~=0 diverging (initial conditions are most accurate)		

Systems of Linear Equations - Methods (cont)		
Advantage: no need for back substitution	~=1 regular	
	~=2 converging	
	~<1 diverging or converging with fluctuations	
	~>1 converging without fluctuations	
	as system grows , \sim is close to 1	

Roots of Non linear EquationsNumerical Methods			
Bracketed Methods	Open Methods		
2 initial guesses bracket the root	initial guesses do not have to bracket root		
to check that intial guesses bracket root: f(xl)*f(xu)<0	Newton Raphson		
Bisection Method	Takes into account 1 initial guess 2 function behavior 3 rate of change		
Xm= XI+Xu / 2	Xi+1=Xi-(f(xi)/f'(xi))		
Limitations:	pitfalls		
1 miss roots	diverge due to infliction point		
2 inefficient (time consuming)	converge to local min/max		
3 if even # of roots between initial guesses are missed	jumping roots- converge to a different root		
4 disregard function behavior; function of initial guesses	if xi is close is zero, it will offshute		
False Position	Limitation: differentiation		
Xr= Xu - (f(xu) * (xl-xu))/(f(xl)- f(xu))	Secant Method		
in some cases, bisection may converge faster	$xi+1 = xi - ((f(xi)^* (xi-i-xi))/(f(xi-1)-f(xi)))$		
	Modified Secant		
	1 initial guess		
	xi-1= xi + oxi		

By **Boko** cheatography.com/boko/ Not published yet. Last updated 9th March, 2018. Page 1 of 2. Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com

Cheatography

Analysis Part1-2 Cheat Sheet by Boko via cheatography.com/55472/cs/15052/

Roots of Non-linear Equations	
Analytical Solution	Graphical Solution
cannot solve complex equations	Visual Preceptions
Roots of an equation	Miss roots due to choice of window

find the value of independent variable when the dependent variable is zero.

Systems of Linear Equations

Graphical Solution	# equations = # unknowns
Visual perception - accuracy	1 solution
Time consuming	# equations < # unknowns
impractical beyond 3D	infinite solutions
	# equations > # unknowns
	1 solution (redundant equation)
	no solution - do not intersect

Systems of Linear Equations - Cranmer's Rule			
D = determinant of coefficients	Limitations		
Dn = determinant of coefficients with n column replaced with B matrix	Time consuming		
Singular System D=0	if D=0		
1 no solution	ill- conditioned system		
2 infinite solutions	D is close to 0		
	instruction is a region		
	sensitive to round offs		

By **Boko** cheatography.com/boko/ Not published yet. Last updated 9th March, 2018. Page 2 of 2. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com