\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Boko} \pdfinfo{ /Title (analysis-part-3-4.pdf) /Creator (Cheatography) /Author (Boko) /Subject (Analysis Part 3-4 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A3A3A3} \definecolor{LightBackground}{HTML}{F3F3F3} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Analysis Part 3-4 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Boko} via \textcolor{DarkBackground}{\uline{cheatography.com/55472/cs/15364/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Boko \\ \uline{cheatography.com/boko} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 1st May, 2018.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Numerical Integration}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Area under the curve} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{{\emph{Single Integral }}}}} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Trapezoidal Rule}}} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{fit linear function} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Single Segment}} A=(f(a)+f(b))*(b-a)/2} \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Multiple Segments}} \seqsplit{A=(f(xo)+2sum(f(xi))+f(xn))*(b-a)/2n}} \tn % Row Count 7 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{n is number of intervals- same width} \tn % Row Count 8 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{increase accuracy.....increase intervals} \tn % Row Count 9 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Exception: -linear function -fluctuating function} \tn % Row Count 10 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{as dx decreases, come closer to function} \tn % Row Count 11 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{* inefficient but no limit on \# of intervals} \tn % Row Count 12 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{if non equal intervals, calculate separately and add} \tn % Row Count 14 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Simpson's 1/3 Rule}}} \tn % Row Count 15 (+ 1) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{fit quadratic function} \tn % Row Count 16 (+ 1) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Single}} \seqsplit{A=(f(x0)+4f(x1)+f(x2))*(b-a)/6}} \tn % Row Count 17 (+ 1) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{equidistant x1} \tn % Row Count 18 (+ 1) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Multiple}} \seqsplit{A=(f(x0)+4sum\_odd(f(xi))+2sum\_even(f(xi))+f(xn))*(b-a)/3n}} \tn % Row Count 20 (+ 2) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\# of intervals is even} \tn % Row Count 21 (+ 1) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{* even \# of intervals} \tn % Row Count 22 (+ 1) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{most popular bec accuracy is not that significant from 3/8 with less computation} \tn % Row Count 24 (+ 2) % Row 20 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Simpson's 3/8 Rule}}} \tn % Row Count 25 (+ 1) % Row 21 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{fit cubic function} \tn % Row Count 26 (+ 1) % Row 22 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{A= \seqsplit{(f(x0)+3f(x1)+3f(x2)+f(x3))*(b-a)/8}} \tn % Row Count 27 (+ 1) % Row 23 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{1/3 rule is most widely used as computational efficiency it provides outweighs the accuracy provided by 3/8 rule} \tn % Row Count 30 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Numerical Integration (cont)}} \tn % Row 24 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Trapezoidal rule can reach same accuracy of 3/8 rule by increasing number of intervals} \tn % Row Count 2 (+ 2) % Row 25 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{* multiple of 3 \# of intervals} \tn % Row Count 3 (+ 1) % Row 26 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{{\emph{Multiple Integral }}}}} \tn % Row Count 4 (+ 1) % Row 27 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Step 1 at y=0 find A {\bf{repeat}}} \tn % Row Count 5 (+ 1) % Row 28 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Step 2 find A of A(y)} \tn % Row Count 6 (+ 1) % Row 29 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Tavg= A(A(y))/area or T=A(A(y))} \tn % Row Count 7 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Numerical Differentiation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Taylor series}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{f(xi+1)= f(xi)+f'(xi)h+f''(xi)h\textasciicircum{}2\textasciicircum{}/2!+............+f\textasciicircum{}n\textasciicircum{}(xi)h\textasciicircum{}n\textasciicircum{}/n!} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Exponential, you need infinite order because f\textasciicircum{}n\textasciicircum{}(xi)=e\textasciicircum{}x\textasciicircum{} which is never 0} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{First Forward difference }}} \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{f'(xi)= (f(xi+1)-f(xi))/h} \tn % Row Count 7 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{to increase accuracy, decrease h that will decrease the rest of Taylor series}}} \tn % Row Count 9 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{First Backward difference }}} \tn % Row Count 10 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{f'(xi)= (f(xi)-f(xi-1))/h} \tn % Row Count 11 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{First Centered difference }}} \tn % Row Count 12 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{f'(xi)= (f(xi+1)-f(xi-1))/2h} \tn % Row Count 13 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Higher Order}}} \tn % Row Count 14 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{First Forward difference }}} \tn % Row Count 15 (+ 1) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{f'(xi)= -f(xi+2)+4f(xi+1) -3f(xi) /(2h)} \tn % Row Count 16 (+ 1) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{First Backward difference }}} \tn % Row Count 17 (+ 1) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{f'(xi) = 3f(xi) -4f(xi-1) +f(xi-2) /(2h)} \tn % Row Count 18 (+ 1) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{First Centered difference }}} \tn % Row Count 19 (+ 1) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{f'(xi)= -f(x+2) \seqsplit{+8f(xi+1)-8f(xi-1)+f(xi-2)} /(12h)} \tn % Row Count 20 (+ 1) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{Second Forward difference }}} \tn % Row Count 21 (+ 1) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{f''(xi)= (f(xi+2)-2f(xi+1)+f(xi))/h\textasciicircum{}2\textasciicircum{}} \tn % Row Count 22 (+ 1) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{Second Backward difference }}} \tn % Row Count 23 (+ 1) % Row 20 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{f''(xi)= (f(xi)-2f(xi-1)+f(xi-2))/h\textasciicircum{}2\textasciicircum{}} \tn % Row Count 24 (+ 1) % Row 21 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{Second Centered difference }}} \tn % Row Count 25 (+ 1) % Row 22 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{f''(xi)= (f(xi+1)-2f(xi)+f(xi-1))/h\textasciicircum{}2\textasciicircum{}} \tn % Row Count 26 (+ 1) % Row 23 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{* more accurate} \tn % Row Count 27 (+ 1) % Row 24 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Lagrange }}} \tn % Row Count 28 (+ 1) % Row 25 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{fit interpolated polynomial then differentiate- function that passes by all points} \tn % Row Count 30 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Numerical Differentiation (cont)}} \tn % Row 26 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{general method} \tn % Row Count 1 (+ 1) % Row 27 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{f'(x)= pt1+pt2+pt3} \tn % Row Count 2 (+ 1) % Row 28 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{pt1: 2x-xi-(xi+1)/ ((xi-1)-xi) ((xi-1)-(xi+1)) * f(xi-1)} \tn % Row Count 4 (+ 2) % Row 29 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{pt2: 2x-(xi-1)-(xi+1)/ (xi-(xi-1)) (xi-(xi+1)) * f(xi)} \tn % Row Count 6 (+ 2) % Row 30 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{pt3: 2x-(xi-1)-xi/ ((xi+1)-(xi-1)) ((xi+1)-xi) * f(xi+1)} \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Ordinary Differential Equations}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Why solve numerically?} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{efficiency or cannot solve analytically} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{butterfly effect }}-{}-sensitive to minor changes} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{chaotic systems}} -{}-system sensitive to initial conditions but with predictable behavior} \tn % Row Count 5 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{ODE}} with respect to 1 independent variable} \tn % Row Count 6 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{PDE}} with respect to more than 1 independent variable} \tn % Row Count 8 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{both can have many dependent variables} \tn % Row Count 9 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{Euler's Method}}} \tn % Row Count 10 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{f(xi+1)=f(xi)+ k1h} \tn % Row Count 11 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{to decrase error, either decrease timestep (h) or take more slopes} \tn % Row Count 13 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{* to decrease timestep (h), take into account round off error propagates and computational efficiency} \tn % Row Count 16 (+ 3) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{assume slope constant in interval} \tn % Row Count 17 (+ 1) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Heun's Method}}} \tn % Row Count 18 (+ 1) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{second order} \tn % Row Count 19 (+ 1) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{yi+1=yi +kavg h} \tn % Row Count 20 (+ 1) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{implicit method (yi+1 predictor) -{}-{}-iterative} \tn % Row Count 21 (+ 1) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Midpoint Method}}} \tn % Row Count 22 (+ 1) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{yi+1= yi + k2 h} \tn % Row Count 23 (+ 1) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Explicit Method} \tn % Row Count 24 (+ 1) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{ymid= yi+ (k1 h)/2} \tn % Row Count 25 (+ 1) % Row 20 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Runge Kutte}}} \tn % Row Count 26 (+ 1) % Row 21 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{generalized formula for methods} \tn % Row Count 27 (+ 1) % Row 22 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{yi+1= yi + phi h} \tn % Row Count 28 (+ 1) % Row 23 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{phi is weighted average of slopes} \tn % Row Count 29 (+ 1) % Row 24 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{number of ks reflects order} \tn % Row Count 30 (+ 1) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Ordinary Differential Equations (cont)}} \tn % Row 25 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{there are infinite methods} \tn % Row Count 1 (+ 1) % Row 26 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{fourth order Runge Kutte}}} \tn % Row Count 2 (+ 1) % Row 27 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{yi+1 = yi + h/6 (k1+ 2k2+2k3+k4)} \tn % Row Count 3 (+ 1) % Row 28 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{Ralston's Method}}} \tn % Row Count 4 (+ 1) % Row 29 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{phi= 1/3 K1 + 2/3 k2} \tn % Row Count 5 (+ 1) % Row 30 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{k2 calculated at 3/4th of interval} \tn % Row Count 6 (+ 1) % Row 31 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{third order Runge Kutte}}} \tn % Row Count 7 (+ 1) % Row 32 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{phi = (k1 + 4k2+ k3)/6} \tn % Row Count 8 (+ 1) % Row 33 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{k2 is midway and k3 is at the end} \tn % Row Count 9 (+ 1) % Row 34 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{systems of odes}}} \tn % Row Count 10 (+ 1) % Row 35 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{need to look at each independently but solve simultanously} \tn % Row Count 12 (+ 2) % Row 36 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\#intial conditions = \# dependent variables} \tn % Row Count 13 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}