Cheatography

Analysis Part 3-4 Cheat Sheet by Boko via cheatography.com/55472/cs/15364/

Numerical Integration	Num
Area under the curve	Taylo
Single Integral	f(xi+
Trapezoidal Rule	f(xi)+
fit linear function	Expo
Single Segment $A=(f(a)+f(b))^*(b-a)/2$	f ⁿ (xi)
Multiple Segments A=	First
$(f(xo)+2sum(f(xi))+f(xn))^{*}(b-a)/2n$	f'(xi)=
n is number of intervals- same width	to in decre
increase accuracyincrease intervals	First
Exception: -linear function -fluctuating function	
as dx decreases, come closer to function	f'(xi)= <i>First</i>
* inefficient but no limit on # of intervals	
if non equal intervals, calculate separately and add	f'(xi)= High
Simpson's 1/3 Rule	First
fit quadratic function	f'(xi)=
Single $A=(f(x0)+4f(x1)+f(x2))^{*}(b-a)/6$	First
equidistant x1	f'(xi)
Multiple A=	First
$\label{eq:constraint} \begin{array}{l} (f(x0)+4sum_odd(f(xi))+2sum_even(f(xi))+f(xn)) \\ *(b-a)/3n \end{array}$	f'(xi)= Seco
# of intervals is even	f''(xi):
* even # of intervals	Seco
most popular bec accuracy is not that significant from 3/8 with less computation	f"(xi):
Simpson's 3/8 Rule	Seco
fit cubic function	f"(xi)
$A = (f(x0)+3f(x1)+3f(x2)+f(x3))^{*}(b-a)/8$	* mo
1/3 rule is most widely used as computational	Lagra
efficiency it provides outweighs the accuracy provided by 3/8 rule	fit int funct
Trapezoidal rule can reach same accuracy of	gene
3/8 rule by increasing number of intervals	f'(x)=
* multiple of 3 # of intervals	pt1: 2
Multiple Integral	pt2: 2
Step 1 at y=0 find A repeat	pt3: 2
Step 2 find A of A(y)	f(xi+
$T_{\alpha} = \Lambda(\Lambda(y))/\alpha$ for $\alpha \in T$, $\Lambda(\Lambda(y))$	

Tavg= A(A(y))/area or T=A(A(y))

Numerical Differentiation

lor series 1)= $+f'(xi)h+f''(xi)h^{2/2}+...+f^{n}(xi)h^{n/n}$ onential, you need infinite order because)=e^x which is never 0 Forward difference = (f(xi+1)-f(xi))/hcrease accuracy, decrease h that will rease the rest of Taylor series Backward difference = (f(xi)-f(xi-1))/hCentered difference = (f(xi+1)-f(xi-1))/2hher Order Forward difference = -f(xi+2)+4f(xi+1) -3f(xi) /(2h)Backward difference = 3f(xi) - 4f(xi-1) + f(xi-2) / (2h)Centered difference = -f(x+2) + 8f(xi+1) - 8f(xi-1) + f(xi-2) / (12h)ond Forward difference $= (f(xi+2)-2f(xi+1)+f(xi))/h^2$ ond Backward difference $= (f(xi)-2f(xi-1)+f(xi-2))/h^2$ ond Centered difference $= (f(xi+1)-2f(xi)+f(xi-1))/h^2$ ore accurate range terpolated polynomial then differentiatetion that passes by all points eral method = pt1+pt2+pt3 2x-xi-(xi+1)/ ((xi-1)-xi) ((xi-1)-(xi+1)) * f(xi-1) 2x-(xi-1)-(xi+1)/ (xi-(xi-1)) (xi-(xi+1)) * f(xi) 2x-(xi-1)-xi/ ((xi+1)-(xi-1)) ((xi+1)-xi) * 1)

Ordinary Differential Equations

Why solve numerically?
efficiency or cannot solve analytically
butterfly effectsensitive to minor changes
chaotic systemssystem sensitive to initial conditions but with predictable behavior
ODE with respect to 1 independent variable
<i>PDE</i> with respect to more than 1 independent variable
both can have many dependent variables
Euler's Method
f(xi+1)=f(xi)+k1h
to decrase error, either decrease timestep (h) or take more slopes
f to decrease timestep (h), take into account round off error propagates and computational efficiency
assume slope constant in interval
Heun's Method
second order
yi+1=yi +kavg h
mplicit method (yi+1 predictor)iterative
Midpoint Method
/i+1= yi + k2 h
Explicit Method
/mid= yi+ (k1 h)/2
Runge Kutte
generalized formula for methods
yi+1= yi + phi h
phi is weighted average of slopes
number of ks reflects order
there are infinite methods
fourth order Runge Kutte
yi+1 = yi + h/6 (k1+ 2k2+2k3+k4)
Ralston's Method
bhi= 1/3 K1 + 2/3 k2
x2 calculated at 3/4th of interval
third order Runge Kutte
phi = (k1 + 4k2+ k3)/6
k2 is midway and k3 is at the end
systems of odes

systems of odes

Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com

Not published yet. Last updated 1st May, 2018. Page 1 of 2.

Analysis Part 3-4 Cheat Sheet by Boko via cheatography.com/55472/cs/15364/

Ordinary Differential Equations (cont)

need to look at each independently but solve simultanously

#intial conditions = # dependent variables

By Boko cheatography.com/boko/ Not published yet. Last updated 1st May, 2018. Page 2 of 2. Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com