
React Native Cheat Sheet
by Bochrak via cheatography.com/200241/cs/42327/

Development environment Set-upDevelopment environment Set-up

ExpoExpo For beginners
 Simplifies the setup process
 Provides OTA updates
 Does not allow you to add custom native code
 Expo apps tend to have larger sizes

React NativeReact Native
CLICLI

For Experienced Developers
 Supports integrating custom native modules
 Potentially better performance for complex
applications
 Requires Xcode or Android Studio to get
started.
 No OTA updates.

Creating an appCreating an app

Initialize a new projectInitialize a new project npx create-expo-app my-app

Start development serverStart development server cd my-app
npm start

Running appRunning app

AndroidAndroid Use the Expo Go app to scan the QR code from your
terminal to open your project.

iPhoneiPhone Use the built-in QR code scanner of the default iOS
Camera app.

 Connect to the same wireless network as your computer.

MetroMetro

 When you run your app, the Expo CLI starts Metro Bundler. It's a
JavaScript bundler that takes all your JavaScript files and assets,
bundles them, and transforms them using Babel. This process
converts the code into a format that can be executed by the platform
running the app (iOS or Android).

ExpoExpo

ExpoExpo A set of tools and services to make development with
React Native easier.

ExpoExpo
SDKSDK

A modular set of packages that provides access that
provides access to native APIs, like Camera or Notificat‐
ions.

ExpoExpo
CLICLI

A command-line tool that is the primary interface between
a developer and other Expo tools.

ExpoExpo
GoGo

An open-source sandbox app you can download on your
phone to view your app in development.

ExpoExpo
SnackSnack

A web-based playground where you can write React
Native snippets and run them in the browser.

ExpoExpo
TunnelTunnel

For establishing a connection that allows devices to access
the app even if they're not on the same wireless network.
npx expo start --tunnel

Finding LibrariesFinding Libraries

 React Native Directory is a searchable database of libraries built
specifically for React Native.

By BochrakBochrak
cheatography.com/bochrak/

Published 11th February, 2024.
Last updated 27th April, 2025.
Page 1 of 10.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/bochrak/
http://www.cheatography.com/bochrak/cheat-sheets/react-native
https://reactnative.directory/
http://www.cheatography.com/bochrak/
https://readable.com

React Native Cheat Sheet
by Bochrak via cheatography.com/200241/cs/42327/

StyleSheetStyleSheet

 An abstraction similar to CSS StyleSheets.
 Declare styles in a structured and optimized manner.
 You can use an array of styles to combine multiple style objects-
the last style in the array has precedence, or mix predefined styles
with inline styles.
 All of the core components accept a propprop named stylestyle.

import React from 'react';
import {StyleSheet, Text, View} from 'react-native'
;
const App = () => (
<View style={styles.container}>
 <Text style={[styles.baseText, styles.boldText
]}>
 This is bold and black text
 </Text>
 <Text style={[styles.baseText, { color: 'blue'
 }]}>
 This is blue and normal weight text
 </Text>
</View>
);
const styles = StyleSheet.create({
 container: { flex: 1,
 padding: 24,
 backgroundColor: '#eaeaea' },
 baseText: { fontSize: 16,
 color: 'black' },
 boldText: { fontWeight: 'bold' }
 }
);
export default App;

UseColorScheme HookUseColorScheme Hook

useWindowDimensions HookuseWindowDimensions Hook

 Used to get the dimensions of the device window.
 It returns an object containing the window's width and height.
 Useful for creating responsive designs and layouts that adapt to different
screen sizes.

import React from 'react';
import
{View, StyleSheet, Text, useWindowDimensions}
from 'react-native';
const App = () => {
const {height,width,scale,fontScale}=useWindowDimensions();
return (
<View style={styles.container}>
 <Text>Window Dimension Data</Text>
 <Text>Height: {height}</Text>
 <Text>Width: {width}</Text>
 <Text>Font scale: {fontScale}</Text>
 <Text>Pixel ratio: {scale}</Text>
</View>
);
};
const styles = StyleSheet.create(
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'},
 });
export default App;

ButtonButton

 A basic button component that should render on any platform.
 Supports a minimal level of customization.

import React from 'react';
import { View, Button } from 'react-native';
const ExampleButton = () => {
const handlePress = () => {console.log('Button pressed');};
return (
<View>
<Button title="Click Me" onPress={handlePress} color="#84
1584"/>
</View>
);
};
export default ExampleButton;

 Required props:Required props: titletitle and onPressonPress

PressablePressable

http://www.cheatography.com/
http://www.cheatography.com/bochrak/
http://www.cheatography.com/bochrak/cheat-sheets/react-native

 Provides and subscribes to color scheme updates from the
appearance module in react native.
 It returns the current color scheme preference of the user's
device.
 Supported color schemes: "light", "dark", null.

import React from 'react';
import
 {Text, StyleSheet, useColorScheme, View}
from 'react-native';
const App = () => {
const colorScheme = useColorScheme();
return (
<View style={styles.container}>
 <Text>useColorScheme(): {colorScheme}</Text
>
</View>
);
};
const styles = StyleSheet.create({
 container: {
 flex: 1,
 alignItems: 'center',
 justifyContent: 'center'}});
export default App;

 Used for users press interactions.
 Detects various stages of press interactions on any of its child
components.
 Highly customizable and flexible way to handle touch-based
input.
 Inherits all the styles of the View component.

By BochrakBochrak
cheatography.com/bochrak/

Published 11th February, 2024.
Last updated 27th April, 2025.
Page 2 of 10.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/bochrak/
https://readable.com

React Native Cheat Sheet
by Bochrak via cheatography.com/200241/cs/42327/

Pressable (cont)Pressable (cont)

import React from 'react';
import { Pressable, Text } from 'react-native';
const ExamplePressable = () => {
return (
<Pressable onPress={() => console.log('Pressed!')}
 style={({ pressed }) => [
 {backgroundColor: pressed ? 'lightskyblue' : 'lightgra
y'},
 {padding: 10, alignItems: 'center' }]}
 hitSlop={{top: 10, bottom: 10, left: 10, right: 10 }}
 pressRetentionOffset={{top: 20, bottom: 20, left: 20}} >
 <Text>Press Me</Text>
 </Pressable>
);
};
export default ExamplePressable;

 props:props:
 onPressIn: onPressIn: method called when a press is activated.
 onPressOut: onPressOut: method called when the press gesture is deactivated.
 onLongPress: onLongPress: method called when user leaves their finger longer than 500 millis‐
econds before removing it, customize this time period using the delayLongPress prop.
 pressed: pressed: state that refers to a boolean value provided to the style and children
functions of Pressable, to check if component is being pressed.
 hitSlop: hitSlop: prop to increase the area where touch gestures are recognized. (extended
interactive area "HitRect").
 pressRetentionOffset: pressRetentionOffset: prop to specify the area in which the touch can move while
maintaining the press's active state. ("PressRect").

NavigationNavigation

React NavigationReact Navigation

 React Native does not come with built-in navigation capabilities.
 React Navigation is the most popular third-party library.
 Enable developers to implement various navigation patterns.
 Provides a set of navigators, such as stack, tab, and drawer
navigators.

Stack NavigatorStack Navigator

 Allows transition between screens where each new screen is
placed on top of a stack.

 NavigationContainer: NavigationContainer: Component container for your app's
navigation structure.
 Manages the navigation tree and contains the navigation state.
 Should be only used once in your app at the root.

 createNativeStackNavigator:createNativeStackNavigator: Function that returns an object
containing two properties.
 Navigator:Navigator: Takes Screen elements as its children to define the

configuration for routes.
initialRouteName:initialRouteName: prop for the Navigator specify what the initial route
in a stack is.
screenOptions:screenOptions: prop to Navigator to specify common options.
 ScreenScreen: Component takes 2 required props name and

component.
name:name: prop which refers to the name of the route.
component:component: prop which specifies the component to render for the
route.
options:options: prop to Screen to specify screen-specific options.

 navigation and route props:navigation and route props: are automatically provided to each
screen component by the navigator.
navigation:navigation: prop is available to all screen components and allows
you to control navigation actions.
route:route: prop contains information about the route, including
parameters passed to that screen.
You can read the params through route.paramsroute.params inside a screen.
Params should contain the minimal data required to show a screen.

By BochrakBochrak
cheatography.com/bochrak/

Published 11th February, 2024.
Last updated 27th April, 2025.
Page 3 of 10.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/bochrak/
http://www.cheatography.com/bochrak/cheat-sheets/react-native
http://www.cheatography.com/bochrak/
https://readable.com

React Native Cheat Sheet
by Bochrak via cheatography.com/200241/cs/42327/

Stack Navigator (cont)Stack Navigator (cont)

import * as React from 'react';
import { View, Text, Button } from 'react-native';
import { createStackNavigator } from '@react-navigation/stack';
import { NavigationContainer } from '@react-navigation/native';
const HomeScreen = ({ navigation }) => {
return (
<View style={{ flex: 1, alignItems: 'center', justifyContent: 'center' }}>
 <Text>Home Screen</Text>
 <Button title="Go to Details"
 onPress={() => navigation.navigate('Details', { someParam: 'Hello!' })} />
</View>
);
};
const DetailsScreen = ({ route }) => {
return (
<View style={{ flex: 1, alignItems: 'center', justifyContent: 'center' }}>
 <Text>Details Screen</Text>
 <Text>Parameter: {route.params.someParam}</Text>
</View>
);
};
const Stack = createStackNavigator();
function App() {
return (
<NavigationContainer>
 <Stack.Navigator initialRouteName="Home"
 screenOptions={{ headerStyle: {backgroundColor: '#f4511e'}}} >
 <Stack.Screen name="Home" component={HomeScreen} options={{ title: 'My Home' }} />
 <Stack.Screen name="Details" component={DetailsScreen} options={{ title: 'Detail Vie
w' }} />
 </Stack.Navigator>
</NavigationContainer>
);
}
export default App;

 Navigation actions:Navigation actions:
 navigation.navigate('RouteName'):navigation.navigate('RouteName'): Pushes a new route to the native stack navigator if it's not already in the stack.
 If you navigate to a route that is not defined in the navigator, it will print an error in the development mode and will not show

errors in production mode.
 navigation.push('RouteName'): navigation.push('RouteName'): Used to navigate to a screen in the stack navigator, adding a new route to the navigation
regardless of the existing navigation history.
 navigation.goBack():navigation.goBack(): Is used to programmatically go back to the previous screen.
 navigation.popToTop():navigation.popToTop(): Used to go back to the first screen in the stack.

Drawer NavigatorDrawer Navigator

Drawer Navigator (cont)Drawer Navigator (cont)

 drawerContent: drawerContent: prop in the Drawer Navigator that allows you to provide a custom component for the drawer's content.

 CustomDrawerContent:CustomDrawerContent: refer to a user-defined React component that is passed to the drawerContent prop.

 DrawerItem:DrawerItem: in a custom drawer allows for more flexibility and customization compared to defining routes directly in the navigator.

import * as React from 'react';
import { View, Text} from 'react-native';
import { NavigationContainer } from '@react-navigation/native';
import { createDrawerNavigator } from '@react-navigation/drawer';
function CustomDrawerContent() {
return (
<DrawerContentScrollView {...props}>
 <Text> Welcome </Text>
 <DrawerItemList {...props} />
 <DrawerItem label="Help" onPress={() => alert('Link to help')} />
</DrawerContentScrollView>
);
}
function HomeScreen() { // ... }
function NotificationsScreen() { // ... }
const Drawer = createDrawerNavigator();
function App() {
return (
<NavigationContainer>
 <Drawer.Navigator initialRouteName="Home"
 screenOptions={{drawerPosition: 'left'}}
 drawerContent={props => <CustomDrawerContent {...props} />} >
 <Drawer.Screen name="Home" component={HomeScreen} />
 <Drawer.Screen name="Notifications" component={NotificationsScreen} /> </Dra
wer.Navigator>
</NavigationContainer>
);
}
export default App;

 The following are also available:
 navigation. jumpTo('RouteName'):navigation. jumpTo('RouteName'): go to a specific screen in the drawer navigator.
 navigation. openDrawer:navigation. openDrawer: open the drawer.
 navigation.closeDrawer: navigation.closeDrawer: close the drawer.
 navigation.toggleDrawer:navigation.toggleDrawer: toggle the state, ie. switch from closed to open and vice versa.

Tab NavigatorTab Navigator

 Common style of navigation.

 Can be tabs on the bottom of the screen or on the top below the
header.

 Bottom tab navigation:Bottom tab navigation: A simple tab bar on the bottom of the
screen that lets you switch between different routes.

 Routes are lazily initialized -- their screen components are not
mounted until they are first focused.

http://www.cheatography.com/
http://www.cheatography.com/bochrak/
http://www.cheatography.com/bochrak/cheat-sheets/react-native

 Renders a navigation drawer on the side of the screen which can
be opened and closed via gestures.

 You cannot use the useNavigation hook inside the drawerContent
since useNavigation is only available inside screens. You get a
navigation prop for your drawerContent which you can use instead.

 drawerPosition:drawerPosition: prop typically set in the screenOptions to specify
the position of the drawer, such as left or right.

By BochrakBochrak
cheatography.com/bochrak/

Published 11th February, 2024.
Last updated 27th April, 2025.
Page 4 of 10.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/bochrak/
https://readable.com

React Native Cheat Sheet
by Bochrak via cheatography.com/200241/cs/42327/

Tab Navigator (cont)Tab Navigator (cont)

 You cannot use the useNavigation hook inside the tabBar since useNavigation is only available inside
screens. You get a navigation propnavigation prop for your tabBar which you can use instead.

import React from 'react';
import { View, Text } from 'react-native';
import { NavigationContainer } from '@react-navigation/native';
import { createBottomTabNavigator } from '@react-navigation/bottom-tabs'
;
import Ionicons from 'react-native-vector-icons/Ionicons';
const HomeScreen = () => {
return(
<View>
 <Text>Home Screen</Text>
</View>
)
};
const SettingsScreen = () => {
return(
 <View>
 <Text>Settings Screen</Text></View>
)
}
const Tab = createBottomTabNavigator();
function App() {
return (
<NavigationContainer>
 <Tab.Navigator screenOptions={({ route }) => ({
 tabBarIcon: ({ focused, color, size }) => {
 let iconName;
 if (route.name === 'Home') {
 iconName = focused ? 'ios-home' : 'ios-home-outline';
 } else if (route.name === 'Settings') {
 iconName = focused ? 'ios-settings' : 'ios-settings-outline'; }
 return <Ionicons name={iconName} size={size} color={color} />; }, }
)} >
 <Tab.Screen name="Home" component={HomeScreen} />
 <Tab.Screen name="Settings" component={SettingsScreen} />
 </Tab.Navigator>
</NavigationContainer>
);
}
export default App;

 The following are also available:
 navigation.jumpTo('RouteName'):navigation.jumpTo('RouteName'): is a method that directly switches to a specified screen within the
tab navigator.

ViewView

TextText

 A component for displaying text.
 Supports nesting, styling, and touch handling.
 Everything inside it is no longer using the Flexbox layout but
using text layout.
 Elements inside it are no longer rectangles, but wrap at the end
of the line.

import React from 'react';
import { Text } from 'react-native';
const ExampleText = () => {
return (
<Text style={{ fontSize: 18, color: 'blue' }}>
 Hello, this is a Text component!
</Text>
);
 };
export default ExampleText;

 You must wrap all the text nodes inside of a <Text> component

 Will raise exceptionWill raise exception
<View> Some text </View>

 CorrectCorrect
<View>
<Text> Some text </Text>
</View>

 Text container:Text container: Text will be inline if the space allow it, otherwise,
text will flow as if it was one.
<Text>
<Text>First part and </Text>
<Text>second part</Text>
</Text>
First part and second part

 View container:View container:
Each text is its own block, otherwise, the text will flow in its own
block.
<View>
<Text>First part and </Text>
<Text>second part</Text>
</View>
First part and
second part

ScrollViewScrollView

 Creates a scrollable area when content exceeds screen's
physical limits.
 Can contain multiple components and views.
 Can be scrolled vertically or horizontally.
 Must have a bounded height in order to work.
 Renders all its react child components at once.

http://www.cheatography.com/
http://www.cheatography.com/bochrak/
http://www.cheatography.com/bochrak/cheat-sheets/react-native

 A container that supports layout with flexbox, style, some touch handling, and accessibility controls.
 Like a <div> in HTML.
 Designed to be nested inside other views and can have 0 to many children of any type.

import React from 'react';
import { View, Text } from 'react-native';
const ExampleView = () => {
return (
<View style={{ flex: 1, justifyContent: 'center', alignItems: 'center' }
}>
 <Text>Hello from View!</Text>
</View>
);
 };
export default ExampleView;

By BochrakBochrak
cheatography.com/bochrak/

Published 11th February, 2024.
Last updated 27th April, 2025.
Page 5 of 10.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/bochrak/
https://readable.com

React Native Cheat Sheet
by Bochrak via cheatography.com/200241/cs/42327/

ScrollView (cont)ScrollView (cont)

import React from 'react';
import { ScrollView, Text, View } from 'react-native';
const ExampleScrollView = () => {
return (
<ScrollView indicatorStyle={"white"}
 style={{ flex: 1 }}
 horizontal={true}> {/ horizontal scrolling /}
 <Text>Item 1</Text> {/ Repeat more components for more items /}

</ScrollView>
);
 };
export default ExampleScrollView;

 Performance Issues Performance Issues with Large Lists:with Large Lists: Slow rendering times for
large lists.
 Memory Consumption:Memory Consumption: Consume a significant amount of memory
with large lists or complex item views.

FlatListFlatList

 Used to efficiently render long lists.
 Offers features like pull-to-refresh, infinite scrolling, and easy item separators.
 Lazy rendering:Lazy rendering: renders items only when they appear on the screen and are removed when the
user scrolls away from them.
 Internal state is not preserved when content scrolls out of the render window.
 Inherits the props of the ScrollView component.

import React from 'react';
import { FlatList, Text, View } from 'react-native';
const ExampleFlatList = () => {
const data = [{ id: '1', name: 'Item 1' }, { id: '2', name: 'Item 2' }];
return (
 <FlatList data={data}
 renderItem={({ item }) => <Text>{item.name}</Text>}
 keyExtractor={item => item.id} />
);
};
export default ExampleFlatList;

 Two required props:Two required props:
data:data: accepts a plain array that contains the list of items to display.
 renderItem:renderItem: a function that goes over each item in the array and renders it into the list.
keyExtractorkeyExtractor: It instructs the list to use the id of each item as React keys instead of the default key
property.

SectionListSectionList

 Used for rendering large lists with section headers.
 Uses lazy renderinglazy rendering to achieve faster rendering.
 Inherits the props of the ScrollView component.
 Internal state is not preserved when content scrolls out of the render window.
 Provides support for section headers and section separators.

import React from 'react';
import { SectionList, Text, View } from 'react-native';
const ExampleSectionList = () => {
const sections = [{ title: 'Section 1', data: ['Item 1', 'Item 2'] },
 { title: 'Section 2', data: ['Item 3', 'Item 4'] }];
return (
<SectionList
 sections={sections}
 renderItem={({ item }) => <Text>{item}</Text>}
 renderSectionHeader={({ section }) => <Text>{section.title
}</Text>}
 keyExtractor={(item, index) => item + index} />
);
};
export default ExampleSectionList;

 Two required props:Two required props:
 sections : sections : accepts the array that contains the list of items to display, akin to the data prop in FlatList.
 renderItem:renderItem: method which acts as the default renderer for every item in each section.
renderSectionHeader:renderSectionHeader: prop, render each section’s header.

TextInputTextInput

 Used for inputting text into the app via a keyboard.

import React, { useState } from 'react';
import { TextInput } from 'react-native';
const ExampleTextInput = () => {
const [inputValue, setInputValue] = useState('');
return (
<TextInput value={inputValue}
 onChangeText={text => setInputValue(text)}
 placeholder="Enter text here"
 style={{ height: 40, borderWidth: 1, margin: 10 }} /
>
);
};
export default ExampleTextInput;

By BochrakBochrak
cheatography.com/bochrak/

Published 11th February, 2024.
Last updated 27th April, 2025.
Page 6 of 10.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/bochrak/
http://www.cheatography.com/bochrak/cheat-sheets/react-native
http://www.cheatography.com/bochrak/
https://readable.com

React Native Cheat Sheet
by Bochrak via cheatography.com/200241/cs/42327/

ImageImage

 Used for displaying different types of images,
network images, static resources, temporary local images,
and images from local disk, such as the camera roll.
 You can also add style to an image.

import React from 'react';
import { Image } from 'react-native';
const ExampleImage = () => {
return (
 <>
{/ Remote Image /}
<Image source={{ uri: 'https://example.com/image.j
pg' }}
 style={{ width: 200, height: 200 }}
 resizeMode="contain" />
{/ Local Image /}
<Image source={require('./path-to-your-local-image.png')}
 style={{ width: 200, height: 200 }}
 resizeMode="cover" />
 </>
);
};
export default ExampleImage;

 resizeMode :resizeMode :
 'cover':'cover': Scales image to fill the container, maintaining its aspect ratio.
 'contain':'contain': Scales image to fit inside the container, maintain the image's
aspect ratio ensuring the entire image is visible.
 'stretch':'stretch': Stretches image to fill the container, possibly distorting the aspect
ratio.
 'center':'center': Centers image in the container without scaling. 'repeat': Repeats
the image to cover the container.

 For network and data images, you must specify the dimensions of
the image.

By BochrakBochrak
cheatography.com/bochrak/

Published 11th February, 2024.
Last updated 27th April, 2025.
Page 7 of 10.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/bochrak/
http://www.cheatography.com/bochrak/cheat-sheets/react-native
http://www.cheatography.com/bochrak/
https://readable.com

	React Native Cheat Sheet - Page 1
	Development environment Set-up
	Metro
	Expo
	Creating an app
	Running app
	Finding Libraries

	React Native Cheat Sheet - Page 2
	StyleSheet
	useWindowDimensions Hook
	Button
	UseColorScheme Hook
	Pressable

	React Native Cheat Sheet - Page 3
	Stack Navigator
	Navigation

	React Native Cheat Sheet - Page 4
	Tab Navigator
	Drawer Navigator

	React Native Cheat Sheet - Page 5
	Text
	ScrollView
	View

	React Native Cheat Sheet - Page 6
	SectionList
	FlatList
	TextInput

	React Native Cheat Sheet - Page 7
	Image

