
AVR Programming - Part I: Assembly Cheat Sheet
by bladabuska via cheatography.com/173176/cs/37345/

The Assemby Basics (copy)The Assemby Basics (copy)

IntroductionIntroduction

This Cheat Sheet is part of the Bladabuska's AVR Cheat Sheet
Collection. This cheat sheet shows the basic syntax of the Assembly
language for AVRs. All information in this cheat sheet is related to
the AVR Assembler v2.0 from Microchip Technology Incorporated
(formerly Atmel Corporation). The Assembly language for AVR
microcontrollers is not case sensitive.

Note:Note: If you use a different assembler software, you must adapt the
information to your software.

The Assemby BasicsThe Assemby Basics

CommentComment

Everything between a semicolon (;) and the end of the line is a
comment and is ignored by the Assembler software. Comments are
primarily used for code documentation, and to disable code sections
for debugging purpose.

Line continuationLine continuation

A backslash character (\) placed at the end of a line is used to inform
the preprocessor and the Assembler that the command continues on
the next line.

Label FieldLabel Field

A label is a text identifier that starts with a letter (a-z or A-Z), a
question mark (?) or an underscore character (_), followed by zero or
more letters, numbers, dollar signs ($), question marks (?), or
underscore characters (_). Labels cannot contain spaces and must
end with a colon character (:).

Integer constantInteger constant

Integer constants starts by a number or a radix specifier. If an integer
starts with a non-zero number character (1-9), than no radix is
specified and the integer is considered to be expressed in the
decimal number system. Integers in binary notation must start with "‐
0b", in hexadecimal notation with "0x" and in octal notation with a
leading zero (0). No spaces are allowed inside the number, but
underscore characters (_) can be placed inside the number to
increase readability..

Character constantsCharacter constants

Character constants are characters or escape sequences enclosed
in single quotes ('). They and can be used anywhere an integer
expression is allowed.

sequencesequence namename symbolsymbol numbernumber

\0 Null Character NUL 0x00

\a Alert Bell BEL 0x07

\b Backspace BS 0x08

\t Horizontal Tab HT 0x09

\n Line Feed "or
newline"

LF 0x0A

\v Vertical Tab VT 0x0B

\f Form Feed FF 0x0C

\r Carriage
Return

CR 0x0D

\\ Backslash \ 0x5C

\xHH Hexadecimal
Number

Where H is the digit in hexadecimal
notation (0-9,A-F)

\000 Octal Number Where o is the digit in octal notation
(0-7)

String constantString constant

A string is any number of characters enclosed in double quotes (")
taken literally, no escape sequences are recognized, and it is not
NULL-terminated. Quoted strings may be concatenated according to
the ANSI C convention (space character) or with the backslash
character (line continuation) to form long strings and multiple line-s‐
panning strings.

 Strings can only be used in conjunction with the DBDB directive or
with the MESSAGEMESSAGE, WARNINGWARNING or ERRORERROR directives.

OperatorsOperators

An operator is a (single or multiple) character(s) that executes an
operation in one or more operands. Unary operators takes only one
operand, placed after the operator. Binary operators takes two
operands and are placed between then. The ternary conditional
operator takes three operands. Operators can be grouped with
paranthesis to receive maximum precedence.

By bladabuskabladabuska

cheatography.com/bladabuska/

Not published yet.
Last updated 27th February, 2023.
Page 2 of 6.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

7

7

http://www.cheatography.com/
http://www.cheatography.com/bladabuska/
http://www.cheatography.com/bladabuska/cheat-sheets/avr-programming-part-i-assembly
http://www.cheatography.com/bladabuska/
https://readable.com

AVR Programming - Part I: Assembly Cheat Sheet
by bladabuska via cheatography.com/173176/cs/37345/

Operators (cont)Operators (cont)

OperatorOperator OperationOperation PrecedencePrecedence

Arithmetic OperatorsArithmetic Operators

+ Addition 12

- Subtraction 12

- Unary minus 14

% Modulo 13

* Multiplication 13

/ Division 13

Bitwise OperatorsBitwise Operators

~ Bitwise NOT 14

& Bitwise AND 8

| Bitwise OR 6

^ Bitwise XOR 7

<< Shift Left 11

>> Shift Right 11

Logic OperatorsLogic Operators

! Logical NOT 14

&& Logical AND 5

|| Logical OR 4

Relational OperatorsRelational Operators

< Less than 10

>= Less than or equal to 10

> Greater than 10

>= Greater than or equal to 10

== Equal to

!= Different from

Ternary Conditional OperatorTernary Conditional Operator

? : Ternary Conditional 3

 The higher the precedence, the higher the priority.
 This operator was introduced in AVR Assembler v2.0.
 This operator was introduced in AVR Assembler v2.1.

Assembler directiveAssembler directive

Assembler directives starts with a dot (.). They are used to guide the
Assembler software on how to understand or implement some part
of the code. Assembly directives can be used to define macros, code
segments, conditional sections and symbols, to reserve memory
space for data, and to implement debug features.

 Refer to the Assembler Directives TableAssembler Directives Table to a complete list of
available Assembler directives.

FunctionFunction

Functions are built-in macro functions that can be used to evaluate
code.

LOW(expression)

Returns the low byte (bits 7-0) of an expression.

HIGH(expression)

Returns the second byte (bits 15-8) of an expression.

BYTE2(expression)

Returns the second byte (bits 15-8) of an expression.

BYTE3(expression)

Returns the third byte (bits 23-16) of an expression.

BYTE4(expression)

Returns the fourth byte (bits 31-24) of an expression.

LWRD(expresion)

Returns the low word (bits 15-0) of an expression.

HWRD(expresion)

Returns the second word (bits 31-16) of an expression.

PAGE(expression)

Returns bits 21-16 of an expression.

EXP2(expression)

Returns 2 to the power of expression.

LOG2(expression)

Returns the integer part of a log2(expression).

INT(expression)

Truncates a floating point expression to integer.

FRAC(expression)

Extracts fractional part of a floating point expression.

By bladabuskabladabuska

cheatography.com/bladabuska/

Not published yet.
Last updated 27th February, 2023.
Page 3 of 6.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

33

4

5

3

4

5

7

7

http://www.cheatography.com/
http://www.cheatography.com/bladabuska/
http://www.cheatography.com/bladabuska/cheat-sheets/avr-programming-part-i-assembly
http://www.cheatography.com/bladabuska/
https://readable.com

AVR Programming - Part I: Assembly Cheat Sheet
by bladabuska via cheatography.com/173176/cs/37345/

Function (cont)Function (cont)

Q7(expression)

Converts a fractional floating point expression to a form suitable
for the multiplication instructions. (Sign + 7-bit fraction)

Q15(expression)

Converts a fractional floating point expression to a form suitable
for the multiplication instructions. (Sign + 15-bit fraction)

ABS(expression)

Returns the absolute value of a constant expression.

DEFINED(symbol)

Returns 1 if symbol was previously defined (using .SET, .DEF, or
.EQU directives), 0 otherwise. Normally used in conjunction with
.IF and .ELIF directives. It does not require parentheses around its
argument.

STRLEN(string)

Returns the length of a string constant, in bytes.

Assembler Directives TableAssembler Directives Table

Source SegmentsSource Segments

.CSEG

Defines the start of a CODE segment. CODE segments have their
own location counter (in words), starting at 0.

.DSEG

Defines the start of a DATA segment. DATA segments have their
own location counter (in bytes), starting at the first address after
the I/O registers (0x60 or 0x100, depending on the number of
peripherals).

.ESEG

Defines the start of an EEPROM segment. EEPROM segments
have their own location counter (in bytes), starting at 0.

.ORG <address>

Sets the location counter (of the segment were it was pĺaced) to
an absolute value.

Reserve Memory SpaceReserve Memory Space

.BYTE <number>

Reserves a number of BYTES in SRAM or EEPROM memories.
The directive takes one parameter, which is the number of bytes
to reserve.

Assembler Directives Table (cont)Assembler Directives Table (cont)

.DB <list>

Reserves a number of BYTES in PROGRAM or EEPROM
memory.

.DW <list>

Reserves a number of WORDS (2 BYTES) in PROGRAM or
EEPROM memory.

.DD <list>

Reserves a number of DOUBLE-WORDS (4 BYTES) in
PROGRAM or EEPROM memory.

.DQ <list>

Reserves a number of QUAD-WORDS (8 BYTES) in PROGRAM
or EEPROM memory.

User Defined SymbolsUser Defined Symbols

.EQU <symbol>=<expression>

Assigns a user defined symbol to a value or expression. A symbol
assigned to a value by the EQU directive is a constant and cannotcannot
bebe changed or redefined.

.SET <symbol>=<expression>

Assigns a user defined symbol to a value or expression. A symbol
assigned to a value by the SET directive can becan be changed or
redefined later in the program.

.DEF <symbol>=<register>

Assigns a user defined symbol to a register. A register can have
several symbolic names attached to it. A symbol can becan be redefined
later in the program.

.UNDEF <symbol>

Undefine a symbol previously defined with the DEF directive. This
provides a way to obtain a simple scoping of register definitions,
avoiding warnings about register reuse.

Macro DefinitionMacro Definition

.MACRO <name>

Defines the start of the macro. It takes the macro name as a
parameter. A macro is marked with a + in the opcode field of the
listfile.

.ENDMACRO/.ENDM

Defines the end of a macro definition. ENDM is a synonym to
ENDMACRO directive.

By bladabuskabladabuska

cheatography.com/bladabuska/

Not published yet.
Last updated 27th February, 2023.
Page 4 of 6.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

A

A

A

LC

LD

LD

LD

LD

http://www.cheatography.com/
http://www.cheatography.com/bladabuska/
http://www.cheatography.com/bladabuska/cheat-sheets/avr-programming-part-i-assembly
http://www.cheatography.com/bladabuska/
https://readable.com

AVR Programming - Part I: Assembly Cheat Sheet
by bladabuska via cheatography.com/173176/cs/37345/

Assembler Directives Table (cont)Assembler Directives Table (cont)

File ManagementFile Management

.INCLUDE <file>

Tells the Assembler to start reading from a specified file. The
Assembler then assembles the specified file until end of file (EOF)
or an EXIT directive is encountered.

.EXIT

Tells the Assembler to stop assembling the file. If an EXIT
directive appears in an included file, the Assembler continues
from the line following the INCLUDE directive in the file containing
the INCLUDE directive.

Conditional AssemblyConditional Assembly

.IFDEF <symbol>

If the symbol is defined, it will include code untill the corres‐
ponding ELSE directive.

.IFNDEF <symbol>

If the symbol is not defined, it will include code untill the corres‐
ponding ELSE directive.

.IF <expression>

If expression is evaluated different from 0, it will include code
untill the corresponding ELSE, ELIF or ENDIF directive.

.ELIF <expression>

It will include code until the corresponding ENDIF (or the next
ELIF at the same level), if the expression is true, and the initial IF
clause and its following ELIF clauses (if any) are also false.

.ELSE

It will include code until the corresponding ENDIF, if the initial IF
clause and its following ELIF clauses (if any) are also false.

.ENDIF

Defines the end for the conditional IF, IFDEF, or IFNDEF direct‐
ives.

Assembler Program OutputAssembler Program Output

.MESSAGE <string>

Output a message string.

.WARNING <string>

Outputs a warning string, but does not halt assembling.

Assembler Directives Table (cont)Assembler Directives Table (cont)

.ERROR <string>

Outputs an error message string and halts the assembling.

Listfile Generation ControlListfile Generation Control

.LIST

Turn the listfile generation ON. The listfile is a combination of
assembly source code, addresses, and opcodes. Listfile
generation is turned on by default.

.NOLIST

Turn listfile generation OFF.

.LISTMAC

Turn macro expansion on. It tells the Assembler that when a
macro is called, the expansion of the macro is to be shown on the
listfile generated by the Assembler. The default is that only the
macro-call with parameters is shown in the listfile.

Special FuncitonsSpecial Funcitons

.CSEGSIZE = <value>

This directive is used to specify the size of the program memory
block at the SRAM memory. This directive can only be used with
AT94K Series Field Programmable System Level Integrated
Circuit Devices.

.OVERLAP

This directive is for projects with special needs and should
normally not be used.

.NOOVERLAP

This directive is for projects with special needs and should
normally not be used.

 All segments of the same type will be concatenated into one single
segment of that type when assembled.
 Cannot be used inside CODE segments.
 Cannot be used inside DATA segments.
 My be used in conditional assembly,
 In order to be able to refer to the reserved location, the directive

should be preceded by a LABEL.
 Introduced in AVR Assembler v2.1.

By bladabuskabladabuska

cheatography.com/bladabuska/

Not published yet.
Last updated 27th February, 2023.
Page 5 of 6.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

I

I

I

V

V

A

C

D

I

L

V

http://www.cheatography.com/
http://www.cheatography.com/bladabuska/
http://www.cheatography.com/bladabuska/cheat-sheets/avr-programming-part-i-assembly
http://www.cheatography.com/bladabuska/
https://readable.com

AVR Programming - Part I: Assembly Cheat Sheet
by bladabuska via cheatography.com/173176/cs/37345/

Preprocessor DirectivesPreprocessor Directives

Preprocessor directives are lines whose first non-empty character is
a hash symbol (#). They are used to issue commands to the prepro‐
cessor.

Macro DefinitionMacro Definition

#define <name> [<value>]

Define a preprocessor object-like macros that basically define a
constant. If value is not specified, it is set to 1.

#define <name([<arg>, <...>])> [<value>]

Define a preprocessor function-like macros that do parameter
substitution. This macro must be called with the same number of
arguments it is defined with. The left parenthesis must appear
immediately after name (no spaces between), otherwise it will be
interpreted as part of the value of a object-like macro. If value is
not specified, it is set to 1.

#undef <name>

Undefine macro name previously defined with a #define directive.
If name is not previously defined, the .undef directive is silently
ignored.

Conditional AssemblyConditional Assembly

#ifdef <name>

All the following lines until the corresponding #endif, #else, or #elif
are conditionally assembled if name is previously #defined.
Shorthand for #if defined (name).

#ifndef <name>

All the following lines until the corresponding #endif, #else, or #elif
are conditionally assembled if name is not #defined. Shorthand
for #if !defined (name).

#if <expression>

All the following lines until the corresponding #endif, #else, or #elif
are conditionally assembled if expression evaluates to true (not
equal to 0). Any undefined symbols used in expression are
silently evaluated to 0.

Preprocessor Directives (cont)Preprocessor Directives (cont)

#elif <expression>

All the following lines until the corresponding #endif, #else, or #elif
are conditionally assembled if expression evaluates to true (not
equal to 0),and all previous #if or #elif expressions were
evaluated to false. Any undefined symbols used in expression are
silently evaluated to 0.

#else

All the following lines until the corresponding #endif are condit‐
ionally assembled if all previous #if or #elif expressions were
evaluated to false.

#endif

Terminates a conditional block initiated with an #if, #ifdef, or
#ifndef directive.

Preprocessor Program OutputPreprocessor Program Output

#message <string>

Outputs string to standard output, but does not affect assembler
error or warning counters.

#warning <string>

Outputs string to standard error, and increments the assembler
warning counter.

#error <string>

Outputs string to standard error, increments the assembler error
counter, and prevents the program of being successfully
assembled.

File ManagementFile Management

#include "file"

Include a file, searching in the current working directory first, then
searching in the built-in known place.

#include <file>

Include a file, searching in the built-in known place only, unless
the current working directory is explicitly specified with a dot (.)
entry in the include path.

Empty DirectiveEmpty Directive

#

Does nothing. The line is removed by the preprocessor.

Note:Note: #pragma preprocessor directives will be treated in a separate
topic.

By bladabuskabladabuska

cheatography.com/bladabuska/

Not published yet.
Last updated 27th February, 2023.
Page 6 of 6.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/bladabuska/
http://www.cheatography.com/bladabuska/cheat-sheets/avr-programming-part-i-assembly
http://www.cheatography.com/bladabuska/
https://readable.com

AVR Programming - Part I: Assembly Cheat Sheet
by bladabuska via cheatography.com/173176/cs/37345/

Preprocessor Pre-defined MacrosPreprocessor Pre-defined Macros

__AVRASM_VERSION__

INTEGER. AVR Assembler version, encoded as (1000*major +
minor)

__CORE_VERSION__

STRING. AVR core version.

__CORE_coreversion__

INTEGER. AVR core version value of the coreversion. For
example: __CORE_V2__

__DATE__

STRING. Build date in the format "Jun 28 2004".

__TIME__

STRING. Build time in the format: "HH:MM:SS".

__CENTURY__

INTEGER. Build time century (tipically 20).

__YEAR__

INTEGER. Build time year, less century (0-99).

__MONTH__

INTEGER. Build time month (1-12).

__DAY__

INTEGER. Build time day (1-31).

__HOUR__

INTEGER. Build time hour (0-23).

__MINUTE__

INTEGER. Build time minute (0-59).

__SECOND__

INTEGER. Build time second (0-59).

__FILE__

STRING. Sorce file name.

__LINE__

INTEGER. Current line number in source file.

__PART_NAME__

STRING. AVR part name.

__partname__

INTEGER. AVR part name value of the partname For example:
__ATmega8__

Preprocessor directivePreprocessor directive

Any line whose first non-empty character is a hash symbol (#). It is
used to issue command to the preprocessor, a software that runs
before calling the Assembler program.

 Refer to the Preprocessor Directives TablePreprocessor Directives Table for a complete list of
available preprocessor directives.
 Refer to the Preprocessor Pre-Defined Macro TablePreprocessor Pre-Defined Macro Table for a complete

list of available preprocessor pre-defined macros.
 Refer to the Preprocessor Pragma DirectivesPreprocessor Pragma Directives for a complete list of

available preprocessor pragma directives.

By bladabuskabladabuska

cheatography.com/bladabuska/

Not published yet.
Last updated 27th February, 2023.
Page 7 of 6.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

2,3,4

2

3

4

http://www.cheatography.com/
http://www.cheatography.com/bladabuska/
http://www.cheatography.com/bladabuska/cheat-sheets/avr-programming-part-i-assembly
http://www.cheatography.com/bladabuska/
https://readable.com

	AVR Programming - Part I: Assembly Cheat Sheet - Page 1
	The Assemby Basics (copy)
	Introduction
	Character constants
	The Assemby Basics
	Comment
	Line continuation
	String constant
	Label Field
	Integer constant
	Operators

	AVR Programming - Part I: Assembly Cheat Sheet - Page 3
	Assembler directive
	Function

	AVR Programming - Part I: Assembly Cheat Sheet - Page 4
	Assembler Directives Table

	AVR Programming - Part I: Assembly Cheat Sheet - Page 5
	AVR Programming - Part I: Assembly Cheat Sheet - Page 6
	Preprocessor Directives

	AVR Programming - Part I: Assembly Cheat Sheet - Page 7
	Preprocessor Pre-defined Macros
	Preprocessor directive

