

Physics 1 Cheat Sheet by Biggergig via cheatography.com/116734/cs/21779/

SI units	
Mass	kg
Distance	m
Time	s
Force	N

Prefixes	
Kilo	10^3
Hecto	10^2
Deka	10^1
Deci	10^-1
Centi	10^-2
Milli	10^-3
Nano	10^-9

Vector Operations	Vector Operations	
Dot Product	a dot b = sum of vector components multiplied	
Cross Products	Determinant of (i j k, x y z, x y z)	

Notes

Notes

1d motion
v_avg = delta x/ delta t
v = dx/dt
displacement is scalar, distance is vector

5 function

d = v * t

 $v = a * t + v_0$

 $x = 1/2 a * t^2 + v_0 * t + x_0$

 $v^2 - v_0^2 = 2 * a * d$

 $x = (v+v_0)t/2$

Vector Notations

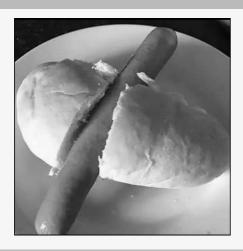
$$\begin{split} \vec{v} &= v_x \hat{i} + v_y \hat{j} + v_z \hat{k} = \frac{dx}{dt} \hat{i} + \frac{dy}{dt} \hat{j} + \frac{dz}{dt} \hat{k} \\ \vec{a} &= a_x \hat{i} + a_y \hat{j} + a_z \hat{k} = \frac{dv_x}{dt} \hat{i} + \frac{dv_y}{dt} \hat{j} + \frac{dv_z}{dt} \hat{k} \end{split}$$

Rotational Acceleration

 $a_c = v^2/r$

T = period

v = 2pir/T


By Biggergig cheatography.com/biggergig/

Not published yet. Last updated 12th February, 2020. Page 1 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Physics 1 Cheat Sheet by Biggergig via cheatography.com/116734/cs/21779/

Notes

Newtons Laws

- 1. If sum forces = 0, no acceleration. At rest stays at rest, motion stays at same speed
- 2. net force = mass * acceleration
- 3. if object A pushes on B, (F_ab) then object b exerts equal force on object A (F_ba)

Force

Force is a vector

Net force = sum of all forces

Normal force is from surface on object, perpendicular

friction is from surface on object, parallel to surface

Tension from pulling force

Weight pull of gravity (mg)

By **Biggergig**

cheatography.com/biggergig/

Not published yet. Last updated 12th February, 2020. Page 2 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com