
DataFrame Python Cheat Sheet
by San (Bhartik) via cheatography.com/153407/cs/33011/

DATAFRAMEDATAFRAME

Definition

Pandas module in python provides a two-di​men​sional data structure with labeled rows and columns similar to excel sheet or a table in relational
database. This data structure in pandas is called DataFrame.

ADVANTAGESADVANTAGES

• DataFrame is the most flexible constr​uctor and allows its creation from many sources as discussed above.

• DataFrame with its row/column names, index selection and slicing methods provide a very flexible way to access and manipulate data.

• Presence of indexes allow for search, filter and merge which are very fast operations in a DataFrame.

• Pandas is built on of numpy so it allows for very efficient matrix and vectorized operations on the data stored in DataFrame.

DISADV​ANTAGESDISADV​ANTAGES

• The flexib​ility provided for access comes at a cost for bit higher cost in terms of higher learning curve for its users. Different ways to access
data can be bit overwh​elming and intimi​dating for new users initially.

• Pandas DataFrame can handle data that can fit in the memory. Additi​onally, DataFrame indexes and structure use additional memory to take
care of bookke​eping needed to maintain such a flexible data structure.

BEST PRACTICES TO USE DATAFRAMEBEST PRACTICES TO USE DATAFRAME

• Many new progra​mmers coming from other progra​mming languages try to use iterator to loop over data inside DataFrame. Iterator (“iter”)
functions are expensive operations so should only be used if every other option has been exhausted. Built-in function provides by
pandas​/numpy have been highly optimized in many cases vectorized and thus are many times faster than a simple for-loop.

• Many new progra​mmers coming from other progra​mming languages try to use iterator to loop over data inside DataFrame. Iterator (“iter”)
functions are expensive operations so should only be used if every other option has been exhausted. Built-in function provides by
pandas​/numpy have been highly optimized in many cases vectorized and thus are many times faster than a simple for-loop.

• Create proper index: Choice of index could have signif​icant impact on the perfor​mance while fetching and performing operation on data stored
in DataFrame. As an example, its best to change data type to date or datetime for timeseries data. This choice of index allows for much flexible
and fast slicing of data needed to perform timeseries analysis on the stored data.

• Create relevant data type most suitable for data in each column of the DataFrame. As an example, after creation of DataFrame from a csv,
some of the columns could be type “o” (pandas object). It is best practice to change the column type to float or integer depending upon data
stored. This should allow more efficient operations to be performed on the data.

• As it’s known “code is read much more often than it is written” so care should be taken to write code which is descri​ptive with self-e​xpl​anatory
variable names and properly docume​nted. Readab​ility plays a key role in unders​tanding of code by others as well as long term mainta​ina​bility of
the project as it grows in scope and codebase.

• One of the main components of ease of readab​ility and mainta​ina​bility of code is following naming and formatting conven​tions. This truly
applies to column/row headers and index names stored in the DataFrame to make access to the data meanin​gful.

http://www.cheatography.com/
http://www.cheatography.com/bhartik/
http://www.cheatography.com/bhartik/cheat-sheets/dataframe-python

CreationCreation

DataFrame can be created using following constr​uctor with flexib​ility to provide data, index name, column names and column data type as follows:

pd.Dat​aFrame(data=None, index: 'Axes | None' = None, columns: 'Axes | None' = None, dtype: 'Dtype | None' = None, copy: 'bool | None' = None,)

Create DataFrame from listCreate DataFrame from list

One of the quickest ways to generate DataFrame in real-life would be to load data directly
from SQL database, CSV or excel file. DataFrame can be created in different ways from
various data sources.

import pandas as pd
list of strings
list1 = ['One', 'Two', 'Three', 'Four', 'Five', 'Six', 'Seven']
#list of numbers list2 = [1,2,3​,4,​5,6,7]
 # Calling DataFrame constr​uctor on lists
df = pd.Dat​aFr​ame​({'​Wor​ds'​:list1, 'Numbe​r':​list2})
print(df)

Shallow copyShallow copy

#Access shallo​w/r​efe​rence copy which generates "​Set​tin​gWi​thC​opy​War​nin​‐
g" warning
df1 = df
df1['Words'][0] = 'One only'

Deep CopyDeep Copy

Data contained in the DataFrame can be modfied by slicing and using various selection methods

#Access data and manipulate using "​dee​p" copy instead of shallow view change

df1 = df[['W​ord​s']​].c​opy()
df1.iloc[0] = 'One only'
df1

Select ColumnSelect Column

#Subset: select one of the columns
df['Words']

Select row with row indexSelect row with row index

#Select row with row index
df.iloc[1]

Select row with .loc[]Select row with .loc[]

#Select row with row index
df.iloc[1]

By SanSan (Bhartik)
cheatography.com/bhartik/

Not published yet.
Last updated 4th July, 2022.
Page 2 of 2.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/bhartik/
http://crosswordcheats.com

	DataFrame Python Cheat Sheet - Page 1
	DATAFRAME
	ADVANTAGES
	DISADV­ANTAGES
	BEST PRACTICES TO USE DATAFRAME
	Creation
	Select row with .loc[]
	Create DataFrame from list
	Shallow copy
	Deep Copy
	Select Column
	Select row with row index

