Cheatography

Math Quiz 3 Cheat Sheet by Berger42 via cheatography.com/77212/cs/19382/

Parabola f(x)= a(x-h) 2

(-3-h)^2	h determines x axis
(2 negatives= positive)	If a is positive parabola is up or to the right
Vertex is at (h,k)	if a is negative opens left or down
(x-3) ² -5>	move to the right
If parenthesis is	addition, move to the left

Graph the functions. Plot at least 3..

Make a table for eqaution

pick points for x

Solve

graph answers

should be in the form of $f(x)=b^x$

Graph the functions. plot at least.. (Rules)

if b>1 its a exponential growth function

if 0<b<1 its a exponential decay function

if b>1 Domain = (- infinity, infinity)

if b>1 Range = (0, infinity)

if b>1The line y=0 is horizontal asympote

if b>1 Function passes through (0,1)

Shifting Parabolas

0		
f(x) =	$f(x) = x^2 + k$	$f(x) = (x-h)^2$
ax ² +bx+c is		
a parabola		
a>0 opens	is a vertical	h>0 shifted
up	shift of	right vice
	$f(x)=x^2$	versa
a<0 opens down	k>0 shifted up	vice versa

Quadratic functions of the form

Graphing the Parabola Defined by $f(x) = ax^2$ If *a* is positive, the parabola open upward, and if *a* is negative, the parabola open downward. If |a| > 1, the graph of the parabola is narrower than the graph of $y = x^2$.

more parabolas

The array of the set of the set

EXAMPLE 5 Graph: $F(x) = (x - 3)^2 + 1$ Solution The graph of $F(x) = (x - 3)^2 + 1$ is the graph of $y = x^2$ shifted 3 units to the right and 1 unit up. The vertex is then (3, 1), and the axis of symmetry is x = 3. A few ordered pairs oblutions are proloted to aid in graphing.

x (possible extra terms here)= square root of b

	al number and if $a^2 = b$,	then $u = \pm \nabla b$.
Helpful Hint		
	on ±3, for example, is read	as "plus or minus 3." It is a shorthand notation for th
	nbers +3 and -3.	
EXAM	PLE I Use the square	e root property to solve x ² = 50.
Solution		
	$x^2 = 50$	
	$x = \pm \sqrt{50}$	Use the square root property.
	$x = \pm 5\sqrt{2}$	Simplify the radical.
Check:	Let $x = 5\sqrt{2}$.	Let $x = -5\sqrt{2}$.
Check:	Let $x = 5\sqrt{2}$. $x^2 = 50$	Let $x = -5\sqrt{2}$. $x^2 = 50$
Check:		Lot x = 5 v L
Check:	$x^2 = 50$	$x^2 = 50$
Check:	$x^2 = 50$ $(5\sqrt{2})^2 \stackrel{?}{=} 50$	$x^2 = 50$ $(-5\sqrt{2})^2 \stackrel{?}{=} 50$

Steps: get it in the form of the equation by adding and subtracting different sides Apply sqaure root and the plus or mins sign

Find the inverse

Change f(x) to y

Switch x & y

Solve for y

Don't forget about cross multiplying

Solve log equation.

Convert to exponential form based off of note

Simplify

 2^3 = 8 which is log 8 = 3

Solve using Substitution.

Substitute the same terms with a letter

Solve for the letter ex: (x=2)

Replace the letter with what was in the equation

Solve

Solve the inequality using the test point method

Solving a Ra	tional Inequality
Step 1. Solv	e for values that make all denominators 0.
Step 2. Solv	e the related equation.
Step 3. Sepa	rate the number line into regions with the solutions from Steps 1 and 2.
	each region, choose a test point and determine whether its value satisfie original inequality.
Chee	solution set includes the regions whose test point value is a solution of whether to include values from Step 2. Be sure <i>not</i> to include value make any denominator 0.
Solution Fir	st we find values for x that make the denominator equal to 0. x + 1 = 0
	x = -1
	$e \frac{5}{r+1} = -2.$
	A 1
	x + 1 = 2 $(x + 1) \cdot 5$ $x + 1 = (x + 1) \cdot -2$ Multiply both sides by the LCD, $x + 1$.
	$1) \cdot \frac{5}{x+1} = (x+1) \cdot -2$ Multiply both sides by the LCD, $x + 1$. 5 = -2x - 2 Simplify.
	$1) \cdot \frac{5}{x+1} = (x+1) \cdot -2 \text{Multiply both sides by the LCD, } x+1.$ 5 = -2x - 2 Simplify. 7 = -2x
	$1) \cdot \frac{5}{x+1} = (x+1) \cdot -2$ Multiply both sides by the LCD, $x + 1$. 5 = -2x - 2 Simplify.
(x + We use these points. Only	$\begin{aligned} \frac{5}{1} &= (x + 1) \cdot -2 \text{Multiply both sides by the LCD}_{,x} + 1, \\ 5 &= -2x - 2 \text{Simplify.} \\ 7 &= 2x & \frac{A}{-\frac{1}{2}} -\frac{B}{-\frac{1}{2}} \\ -\frac{7}{2} &= x & \frac{A}{-\frac{1}{2}} -\frac{B}{-\frac{1}{2}} \\ ztronomizions to divide a number line into three regions and choose to the step point value from region B and fisch the original inequality. The so$
(x + We use these points. Only	$\frac{1}{5} + \frac{1}{5} + \frac{1}$

Published 25th April, 2019. Last updated 25th April, 2019. Page 1 of 2. Sponsored by **Readable.com** Measure your website readability! https://readable.com

Cheatography

Math Quiz 3 Cheat Sheet by Berger42 via cheatography.com/77212/cs/19382/

log 1=1	Only solve multiple logs if they have the same base
log b ^x =x	$\log (xy) = \log (x) + \log (y)$
b ^{log sub}	bx =x
log 1=0	
log b=1	
power is base is	s what it's equal to the sub

f and g functions

replace f and g Horizontal line test perform operation in middle $(g \circ f)(x) = g(f(x))$ intersects more

than once, not a function

Graphing inverse

Look at > or < sign, determines what part of parabolas are the answer

Find the inverse

plot parabola from solved equation "y=..."

Make a table of points

Solve the equation b = c

Get bases same by putting a power or square root or fraction

Cross out bases

Exponents become base

Solve equation

Sometimes doesnt look like example, general it has 2 numbers raised to a power with an equal sign between

Quadratic Formula

en in the form $ax^2 + bx + c =$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Solving a Polynomial Inequality

Think of it as a Quadratic equation (< OR > as a = sign) Solve equation Plot answers Pick numbers from each A,B,C if equation is tue part of solution if false not part of solution

find and write out solution set

Solving a Polynomial Inequality EX

		$\frac{1}{(x-3)(x-3)} = 0$	
		or $x - 3 = 0$	
		3 x = 3	
The two numbers -		number line into three reg	ione A R and C
the two numbers	5 and 5 separate the	number nue into unce reg	ions, A, D, and C.
	A	B C	
	-3	3	
Now we subst	itute the value of a	test point from each regio	on. If the test valu
		region containing the test	
	.,,,		
		(, a) (, a) = 0	Result
Region	Test Point Value	(x + 3)(x - 3) > 0	Result
Region	Test Point Value -4	$(x + 3)(x - 3) \ge 0$ $(-1)(-7) \ge 0$	True
A	-4	(-1)(-7) > 0	True
A B C	-4 0 4	(-1)(-7) > 0 (3)(-3) > 0 (7)(1) > 0	True False True
A B C The points in regio	-4 0 4 ons A and C satisfy	(-1)(-7) > 0 (3)(-3) > 0 (7)(1) > 0 the inequality. The num	True False True bers -3 and 3 ar
A B C C The points in region tot included in the	-4 0 4 ens A and C satisfy solution since the	(-1)(-7) > 0 (3)(-3) > 0 (7)(1) > 0 the inequality. The num inequality symbol is >.	True False True bers -3 and 3 ar
A B C The points in region not included in the	-4 0 4 ons A and C satisfy	(-1)(-7) > 0 (3)(-3) > 0 (7)(1) > 0 the inequality. The num inequality symbol is >.	True False True bers -3 and 3 ar
A B C The points in region not included in the	-4 0 4 ons A and C satisfy solution since the and its graph is show	(-1)(-7) > 0 (3)(-3) > 0 (7)(1) > 0 the inequality. The num inequality symbol is >. 'n.	True False True bers -3 and 3 ar
A B C The points in region not included in the	-4 0 4 ons A and C satisfy solution since the and its graph is show	(-1)(-7) > 0 (3)(-3) > 0 (7)(1) > 0 the inequality. The num inequality symbol is >.	True False True bers -3 and 3 ar

Vertex Formula

```
First isolate the x-variable terms by sub
      y = ax^2 + bx + y - c = ax^2 + bx
ext, factor a from the terms ax^2 + bx.
                                                                y - c = a\left(x^2 + \frac{b}{a}x\right)
 Next, add the square of half of \frac{b}{a}, or \left(\frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} to the right side inside the parentheses. Because of the factor a, what we really added was a\left(\frac{b^2}{4a^2}\right), and this must be added to the left side.
       y - c + a\left(\frac{b^2}{4a^2}\right) = a\left(x^2 + \frac{b}{a}x + \frac{b^2}{4a^2}\right)
                                     \frac{b^2}{4a} = a \left( x + \frac{b}{2a} \right)^2
Simplify the left side and factor the right side.
y = a \left( x + \frac{b}{2a} \right)^2 + c - \frac{b^2}{4a}
Add c to both sides and subtraction from both sides.
                   y - c + \frac{b^2}{4a} = a\left(x + \frac{b}{2a}\right)^2
                                                                                                                                                                     ract \frac{b^2}{4a}
Compare this form with f(x) or y = a(x - h)^2 + k and see that h is \frac{-b}{2a}, which n that the x-coordinate of the vertex of the graph of f(x) = ax^2 + bx + c is \frac{-b}{2a}.
   Vertex Formula
The graph of f(x) = ax^2 + bx + c, when a \neq 0, is a parabola with v
                                                                          \left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)
```

9.3-9.6

By Berger42

cheatography.com/berger42/

Published 25th April, 2019. Last updated 25th April, 2019. Page 2 of 2.

Sponsored by Readable.com Measure your website readability!