Physics - Projectile Motion Cheat Sheet
by BeeBooBopNerd via cheatography.com/131975/cs/26636/

Vocabulary	
projectile	object moving through the air, either initially thrown or dropped, subject only to the effects of gravity
tragectory	the path of a projectile, which is parabolic in two dimensions
projectile	movement of an object motion through the air, subject only to the effects of gravity
range	the maximum horizontal distance a projectile travels
launch	The angle of a projectile's initial velocity when measured from the horizontal direction.
angle	These angles are typically 90° or less

Kinematic Equations

- $\boldsymbol{V}=\frac{\Delta \text { position }_{1)}}{\Delta \text { time }^{1}}$
- $V_{f}=V_{i}+a t$
- $V_{f}^{2}=V_{i}^{2}+2 a D$
- $D=V_{i} t+\frac{1}{2} a t^{2}$
- $D=V_{f} t-\frac{1}{2} a t^{2}$
- $D=\frac{1}{2}\left(V_{f}+V_{i}\right) t$

Common Mistakes and Misconceptions

How to Solve (Launched at an Angle)
1.) Draw a diagram of the scenario

- Make sure to label everything or Brian will be mad
2.) List our known and unknown variables
- Make a T-chart with an x and y column where you fill out the variables
3.) Break the motion into horizontal and vertical components parallel to the x and y-axes
- Motion in each dimension is independent of each other
4.) Solve for the unknowns in two separate motions - one horizontal and one vertical.
- Use the kinematic equations to solve. Usually, try to find time first because that will make everything easier. Time is the common variable between the x motion and y motion

When solving for the initial velocities, you have to use trig, so x would be the initial velocity times $\cos \theta$ and y would be the initial velocity times $\sin \theta$

How to solve (Horizontal Projectiles)
Tips (Horizontal Projectiles)

- Um just make sure to always
find time first because that
makes everything a lot easier.
Usually, if you want to find
time, the equation is D=Vit+(-
1/2)at
- Also, you usually know the
initial and final velocities for
the x-axis, so write that in the
T chart. They should both be the
same, so that means acceleration
is 0. If there are any other
variables that are given, write
them in the T chart. As for the
$y-a x i s, ~ a c c e l e r a t i o n ~ s h o u l d ~ b e ~-~$
$9.8 ~ m / s ~$
- Um just make sure to always
find time first because that
makes everything a lot easier.
Usually, if you want to find
time, the equation is $\mathrm{D}=\mathrm{Vit+}(-$
1/2) at
- Also, you usually know the
initial and final velocities for
the x-axis, so write that in the
T chart. They should both be the
same, so that means acceleration
is 0. If there are any other
variables that are given, write
them in the T chart. As for the
y-axis, acceleration should be
$9.8 \mathrm{~m} / \mathrm{s}^{2}$. Again, time is the
it's some weird problem)
The final velocity for y, when
$\mathrm{m} / \mathrm{s} \wedge 2$
1.) Remember: What happens in the vertical direction does NOT affect the horizontal direction, and vise versa.
- An object's horizontal position, velocity, or acceleration does not affect it's vertical position, velocity, or acceleration. These variables are only related by t time. 2.) It's easy to forget that horizontal motion has constant velocity (and zero acceleration) while vertical motion has constant acceleration
- This means for projectile motion, the initial velocity in the x-direction will be the same as the final velocity in the x direction, while the starting and end velocities in the y direction will be different because of acceleration due to gravity.
3.) Make sure to define the coordinate axes and pay attention to the sign of the acceleration constant g.

By BeeBooBopNerd
cheatography.com/beeboobopnerd/
1.) List our known and unknown variables

- make a t-chart with an x and y column where you fill out the variables
2.) Break the motion into
horizontal and vertical
components parallel to the x and y-axes
- Motion in each dimension is independent of each other
3.) Solve for the unknowns in two separate motions - one horizontal and one vertical. - Use the kinematic equations to solve. Usually try to find time first because that will make everything easier. Time is the common variable between the x motion and y motion

Published 17th February, 2021. Last updated 17th February, 2021.
Page 1 of 2 .

Sponsored by Readable.com

Measure your website readability! https://readable.com

