

## math Cheat Sheet

by beabo via cheatography.com/178745/cs/37298/

#### LIMITS AND DERIVATIVES

b

е

#### INTRO

values of

We say  $\lim(x\to a^-) f(x)$  is the expected value of f at x = a given the values of f near

x to the left of a. This value is called the left hand limit of f at a. We say  $\lim (x \rightarrow a^+) f(x)$  is the expected value of f at x = a given the

f near x to the right of a. This value is called the right hand limit of f(x) at a

If the right and left hand limits coincide, we call that common value as the limit

of f(x) at x = a and denote it by  $\lim_{x \to a} f(x)$ .

### LHL AND RHL

**Illustration 2** Consider the function  $f(x) = x^3$ . Let us try to find the limit of this function at x = 1. Proceeding as in the previous case, we tabulate the value of f(x) at x near 1. This is given in the Table 13.5.

| Table 13.5 |       |          |             |             |          |       |  |
|------------|-------|----------|-------------|-------------|----------|-------|--|
| X          | 0.9   | 0.99     | 0.999       | 1.001       | 1.01     | 1.1   |  |
| f(x)       | 0.729 | 0.970299 | 0.997002999 | 1.003003001 | 1.030301 | 1.331 |  |

From this table, we deduce that value of f(x) at x = 1 should be greater than 0.997002999 and less than 1.003003001 assuming nothing dramatic happens between

$$\lim_{x\to 1^-} f(x) = \lim_{x\to 1^+} f(x) = \lim_{x\to 1^-} f(x) = 1$$

- 1. A constant function takes the same value for all values of  $\mathbf{x}$ , hence, limit will also be same
- 2. If value of lhl != rhl, limit is not defined
- 3. However, at a given point the value of a function and its limit may differ, even when both are defined

# Algebra of limits

| Limit of sum of two functions is sum of the limits of the functions                                                        | $\lim_{x\to a} [f(x) + g]$ $(x)] = \lim_{x\to a} f(x) + g$ $\lim_{x\to a} g(x)$   |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Limit of difference of two functions is difference of the limits of the functions                                          | $\lim_{x \to a} [f(x) - g(x)]$ $= \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$      |
| Limit of product of two functions is product of the limits of the functions                                                | $\lim_{x\to a} [f(x) \cdot g(x)]$ $= \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$ |
| Limit of quotient of two functions is quotient of<br>the limits of the functions (whenever the<br>denominator is non zero) | $\lim_{x\to a} [f(x)/g(x)] =$ $\lim_{x\to a} f(x)/\lim_{x\to a} x\to a$ $g(x)$    |

In particular as a special case of (iii), when g is a constant function such that  $g(x) = \lambda$ , for some real number  $\lambda$ , we have  $\lim_{x\to a} [(\lambda.f)(x)] = \lambda. \lim_{x\to a} f(x)$ 

### Limits of polynomial functions

A function f is said to be a polynomial function if f(x) is zero function or if f(x) = a0 + a1x + a2x2 + ... + anxn, where aix are real numbers such that an  $\neq 0$  for some natural number n.

- 1.  $lim(x \rightarrow a)x^n = a^n$
- 2. let  $f(x)=a0+a1x+a2x^2...anx^n$  be a polynomial function. then, f(x)=f(a)



By **beabo** cheatography.com/beabo/

Not published yet. Last updated 25th February, 2023. Page 1 of 1. Sponsored by **CrosswordCheats.com**Learn to solve cryptic crosswords!
http://crosswordcheats.com