Networks - Physical Layer Cheat Sheet by Bayan (Bayan.A) via cheatography.com/122738/cs/22931/

Nyquist Theorem

Equation expressing maximum data rate for a finite bandwidth noiseless channel

lf signal is run	The filtered signal can be
through a low-	completely reconstructed
pass filter of	by making only 2B
bandwidth B	samples per second
Sampling	Higher frequency
faster than 2B	components have already
x per second	been filtered out.
is pointless	

B = channel bandwidth

V = discrete levels the signal consists of Max data rate = 2B log₂ V bits/sec

Twisted Pair

A form of transmission media Two insulated Twisted in helical

1 wo insulated	i wisted in neliear
copper wires (1mm thick)	form (like DNA)
Wires are twisted so th	e waves cancel out
Used for transmitting a information	nalog or digital
Bandwidth depends on wire thickness and distance traveled	Several megabi- ts/sec for a few kilometers
Widely used	Adequate perfor- mance and cheaper
UTP	Unshielded Twisted Pair
Cat 5 UTP cable, mostly in office buildings:	4 pairs of twisted insulated wires in a single plastic sheath.

Twisted Pair (cont)

Full-D- uplex	Links can be used in both directions at the same time, like a two-way road
Half-D- uplex	Link can be used in either direction, only one way at a time
Simplex	Links that allow traffic in only one direction.

Digital Modulation

Process of converting between bits and signals

To send digital information, we must devise analog signals to represent bits

Baseband Transmission

Signals occupies frequency from zero up to a maximum

The maximum frequency depends on the signaling rate.

Clock recovery

The process of extracting timing information from a data stream for the receiver to decode

To encode bits into symbols, receiver must know when one symbol ends and the next begins

Receiver needs to reference a clock of the same frequency

Accurate clocks are Another strategy expensive must be used

Overhead Definition

Overhead is any combination of excess or indirect computation time, memory, bandwidth, or other resources that are required to perform a specific task.

NRZ

Non-return to zero	
Simplest, literal line code	
-V for 0	+V for 1
A long run of 0's or 1's	Differentiating between bits
leaves the	become difficult. A long line of 15 0's looks like 16
signal	without a very accurate
unchanged	clock

Bandwidth Efficiency	
For NRZ, it moves between + and - levels every 2 bits	Requires bandwidth of at least <i>B/2</i> when the bit rate is <i>B</i> bits/sec
This limits the speed, required to run faster.	as more bandwidth is
Using more than two is limited bandwidth can	signalling levels, the be used for efficiently
e.g. using 4 voltages, 2 bits can	Effective only if the receiver can distin-

be sent at once, as a guish the 4 levels single symbol

The signal change rate is now half the bit rate, thus reducing the required bandwidth.

Sponsored by Readable.com Measure your website readability! https://readable.com

By **Bayan** (Bayan.A) cheatography.com/bayan-a/ Published 19th July, 2023. Last updated 24th May, 2020. Page 1 of 5.

Networks - Physical Layer Cheat Sheet by Bayan (Bayan.A) via cheatography.com/122738/cs/22931/

Bandwidth Efficiency (cont)

The rate the signal changes is the symbol rate

the bit rate is the symbol rate multiplied by the number of bits per symbol

NRZI

The inverted vesior	n of NRZ
transition for 1	no transition for 0
Used by USB	Universal Serial Bus

NRZI Image

Manchester Used for classic Ethernet low to high = 0high to low = 1Requires twice as much bandwidth as NRZ because of the clock

Adds 100% overhead

Guarantees clock	-Each bit
recovery and balanced	modulate
signal because:	balanced

is ed in a signal

Manchester Image

By Bayan (Bayan.A) cheatography.com/bayan-a/

Bipolar Encoding (AKA Alternate Mark Inversion) (cont)

Guarantees a	-1's are encoded in
balanced signal	alternating +V, - V
because:	signal levels

If -V is a logical zero, and the two voltages +1V and -1V represents a logical zero, to send "1", the transmitter alternates between +1V and -1V.

Bipolar Encoding Image

Balanced Signal	
Base-band signal averages zero	As much + voltage as -, even after short period of time
No DC electrical components	Advantangeous, as some channels (coaxial or lines with transformers) attenuate a DC component due to their physical properties
DC component filtered out	Avoids energy waste
Provides better clock recovery	Through transitions, due to mix of + and - volatages.
Allows measuring the signal average	For error detection and receiver calibration. Impossible with an unbalanced signal

Link Failure

Instances for possible link failure:

Sequence used for	Transmitting all
scrambling could be the	0's, constituting
same as the signal	a link failure

With unbalanced signals, the average may drift from the true decision level due to a density of 1s, for example, which would cause more symbols to be decoded with errors.

Capacity Coupling

Method of connecting the reciever to the channel.

Passes only the AC portion of the signal.

4B/5B

A form of line code

Maps groups of 4 bits of data onto groups of 5 bits for transmission

Used to prevent more than 3 consecutive 0's

Every data (4B) has a fixed codeword(5) that it is translated to

This scheme	Better than the 100%
adds 25%	overhead of Manchester
overhead	encoding

Non-data codes can represent physical layer control signals

e.g: "11111" -"11000" = start of a frame idle line

Produces at least two transitions per 5 bits of output code, regardless of input data.

Published 19th July, 2023. Last updated 24th May, 2020. Page 2 of 5.

Sponsored by Readable.com Measure your website readability! https://readable.com

Networks - Physical Layer Cheat Sheet by Bayan (Bayan.A) via cheatography.com/122738/cs/22931/

4B/5B Encoding Table

Data		4B5B code Data		Data	4B5B code	Symbol	4B5B code	Description
(Hex)	(Binary)	4B5B code	(Hex)	(Binary)	4B5B code	н	00100	Halt
0	0000	11110	8	1000	10010	1	111111	Idle
1	0001	01001	9	1001	10011	J	11000	Start #1
2	0010	10100	٨	1010	10110	к	10001	Start #2
3	0011	10101	в	1011	10111	L	00110	Start #3
4	0100	01010	С	1100	11010	Q	00000	Quiet (loss of signal)
5	0101	01011	D	1101	11011	R	00111	Reset
6	0110	01110	E	1110	11100	s	11001	Set
7	0111	01111	F	1111	11101	т	01101	End (terminate)

8B/10B

Maps 8 bits input onto 10 bits output	80% efficient
Achieves DC signal balance, never far from balanced	At most 2 bit disparity
8 bits of data are transmitte entity called a symbol	ed as a 10-bit
Low 5 bits are encoded into a 6 bit group	5b/6b portion
Top 3 bits encoded into a 4-bit group	3b/4b portion
These groups are concater form a 10-bit symbol that is	0
Standards also define up to 12 symbols that	These indicate start-of-frame.

	otart or marrier,
can be sent in place of a	end-of-frame,
data symbol	link idle, etc.

Helps clock recovery, never more than 5 consecuive 1s or 0s

Passband Transmission

Signals that are shifted to occupy a higher range of frequencies, (all wireless transmissions)

Scheme that regulates the **amplitude**, **phase** or **frequency** of a carrier signal to convey bits.

Occupies a band of frequencies around the frequency of the carrier signal.

Passband Transmission (cont)

Common for wireless and optical channels. Regulatory constraints and intereference

prevention dictates choice of frequencies.

Modulating the amplitude, frequency/phase of a carrier signal sends bits in a (non-zero) frequency range

Passband Transmission Image

ASK, FSK, PSK

Regulating/modulating a carrier		
Amplitude Shift Keying (ASK)	-Two different amplitudes represent 0 and 1	
	-More levels can represent more sumbols	
Frequency Shift Keying (FSK)	-Two or more tones used	
Phase Shift Keying(PSK)	- Carrier wave system- aticaly shifted 0 or 180 dgrees at each symbol period.	

Schemes can be combined and more levels used to transmit more bits per symbol. However, only one of frequency and phase can be modulated as they are related.

ASK NRZ signal of bits

By **Bayan** (Bayan.A) cheatography.com/bayan-a/ Published 19th July, 2023. Last updated 24th May, 2020. Page 3 of 5.

Frequency Shift Keying (FSK)

Two frequencies used

one symbol for 0, another for 1

FSK Image

NRZ signal of bits

Phase Shift Keying - PSK

Only Phase is	to identify points
modulated through	on the plane
time	

Amplitude stays constant, not modulated

Each point corresponds to one of four symbols.

2 bits per symbol transmitted

Example:

To indentify 4 vertices("quadrature") of a square centered plane. Each point corresponds to 4 symbols.

As there are 4 symbols, 2 bits per symbol are transmitted.

PSK

Constellation Diagrams

Shorthand to capture the amplitude and phase modulations symbols

The points give the **legal amplitude and phase combinations** of each symbol.

The **phase** of a dot is indicated by the *angle a line from it to the origin makes with the positive x-axis*

The **amplitude** of a dot is the *distance from the origin*

Sponsored by Readable.com Measure your website readability! https://readable.com

Networks - Physical Layer Cheat Sheet by Bayan (Bayan.A) via cheatography.com/122738/cs/22931/

Constellation Diagram Image

QAM-16

QAM	Quadrature
	Amplitude
	Modulation
16 combinations of	Can transmit 4
amplitudes and phase	bits per symbol
used	

A denser modulation scheme with 64 different combinations is called QAM-64. There are even higher-order QAMs used.

Gray-Coding

Assigns(maps) bits to symbols so that		
adjacent symbols differ in only 1 bit position		
If a receiver decodes	It will make only a	

single bit in error

the symbol in error

Gray-coding Image

Gray-coded QAM-16 constellation

Multiplexing

Channels shared by multiple signals

More convenient than using a single wire to carry several signals than to install a wire for every signal.

By **Bayan** (Bayan.A) cheatography.com/bayan-a/

Frequency Division Multiplexing(FDM)

Divides the spectrum into frequency bands. e.g. AM radio

Shares the channel by placing users on different frequencies

Frequencies are allocated different logical channels, with interchannel separation great enough to prevent interference

Subcarriers are coordinated to be tightly packed

Filters limit the useable bandwidth to 3100hz p/voice-grade channel.

Many channels multiplexed together, 4000hz allocated per channel

Different frequencies encode different values, while phase and amplitude remain constant.

Higher frequency is associated to 1 bit, and a lower to 0

Separations(the excess) are called **guard bands**. Even though there is a large gap, some adjacent channels do overlap because filters do not have ideal 'sharp edges', therefore a strong spike at the edge of one channel will be felt in jacanet as *nonthermal noise*

- (a) The original bandwidths
- (b) The bandwidths raised in frequency
- (c) The Multiplexed channel

Published 19th July, 2023. Last updated 24th May, 2020. Page 4 of 5.

Orthogonal FDM (OFDM)

OFDM (Orthogonal FDM) is an efficient FDM technique used for 802.11, 4G cellular and other communications that does not use guard bands.

The channel is divided into many subcarriers that independently send data.

Subcarriers are tightly packed in the frequency domain.

Frequency response of each subcarrieris zero at the center of adjacent subcarriers, therefore subcarriersbe sampled at their center frequencies without interference from neighbours

Guard time required to repeat ports of symbol signals so that they have the desired frequency

Time Division Multiplexing

Shares a channel ove	r time
----------------------	--------

Users take turns on a	Not packet
fixed schedule	switching

Each gets the entire badwidth for a little burst of time

Bits from each input stream are taken in a fixed **time slot** and output to the aggregate stream.

This stream runs the *sum rate* of individual streams.

Streams must be synchronized in time.

Widely used in telephone/cellular systems

Small intervals of **guard time** analoguous to a requency guard band may be added to accomodate small timing variations

Sponsored by Readable.com Measure your website readability! https://readable.com

Networks - Physical Layer Cheat Sheet by Bayan (Bayan.A) via cheatography.com/122738/cs/22931/

Time Division M	Jultiplexing	Image
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array} \rightarrow$	Round-robin TDM mux	2 1 3 2 1 3 2 → Guard time

Three streams being multiplexed with TDM.

Code Divison Multiple Access

Shares the cha	annel by giving users a code
0	

Codes are Can be sent at the same orthogonal time

Widely used as part of 3G networks

Scalar $A \bullet B = (a_1, a_2, a_3) \bullet (b_1, b_2,$ Product (example):

 $b_3) = a_1b_1 + a_2b_2 + a_3b_3$

Walsh Codes (example):

 $A = (a_1, a_2, a_3) \overline{A} = (-a_1, -a_2, -a_3)$ $\mathbf{B} = (b_1, b_2, b_3) \overline{\mathbf{B}} = (-b_1, -b_2, -b_3)$

Properties of CDMA codes:

For all **A**, **B** with **A** ≠ **B A** ● **A** = +1 $\mathbf{A} \bullet \overline{\mathbf{A}} = -1$ $\mathbf{A} \bullet \mathbf{B} = \mathbf{A}\mathbf{B} = 0$

Transmission:

A, B and C transmit 1, 1 and 0 respectively A, B and C send codes A, B and \overline{C} respectively The receiver sees $\mathbf{A} + \mathbf{B} + \overline{\mathbf{C}}$

Code Division Multiple Access(CDMA)

A form of spread	Narrowband signal		
spectrum	spread out over a wider		
communication	frequency band		
Tolerant of interference.			
Allows multiple signals from different users			
to share the same frequency band.			
CDMA shares the channel by giving users a			
code			
Codes are	Can be sent at the same		
orthogonal;	time		
Widely used as part of 3G networks			

By Bayan (Bayan.A) cheatography.com/bayan-a/ Published 19th July, 2023. Last updated 24th May, 2020. Page 5 of 5.

Sponsored by Readable.com Measure your website readability! https://readable.com

Each station can transmit over the entire frequency spectrum all the time

Can also be called "Code Division Multiplexing", but because it is used mostly to allow the same frequency band to be shared by different users by multiple signals, it was commonly called Code **Division Multiple** Access