Cheatography

Data Structures

Organises and stores data

Each has its own strengths and

weaknesses

The best data The type of data you
structures need to store
depend on :

How your application
needs access to the
data

The operations it will
perform the most on the
data

Steps performed to accomplish the specified
task

Big O Notation

Time complexity is the steps taken to run an
algorithm

How well an algorithm scales to the number
of items that it must deal with

Always look at the worst case scenario
Summary:
o(1)
O(logn)
O(n)

Constant
Logarithmic
Linear
O(nlogn)
o(n?)

n log-star n

Quadratic

Big O Graph

n2n? n
100 T .

i

!
0| il o

i

1
80 b
70
60
N
50
40

30

The number of items have no effect on the
number of steps.

Number of steps is always going to be
constant

This has a constant time complexity of O(1)

As the number of items inscreases,
algorithm doesn’t degrade at all.

Retrieving with an index is a constant time
o(1)

Linear time complexity

Time complexity increases as n increases
This increase is /inear

Worst case requires going through the
entire array

Fixed size array, not resizable (not
dynamic)

>Adding a new element to an array requires
a new array big enough for the new element

>Then copy the old elements into it with the
new integer

This is also a linear time complexity as
creating an array doesn’t depend on
elements, and adding a new one doesn’t
depend on it,

> but copying it requires looping over the
entire array.
If the array had a space and we knew the

index, it would be O(1), because it is similar
to retrieving an element.

In conclusion; With a loop, it's O(n), without
a loop, its O(1)

Retrieving without an index is Linear time
O(n)

Data Structures and Algorithms Cheat Sheet
by Bayan (Bayan.A) via cheatography.com/122738/cs/22943/

Arrays (cont)

if you create an array of strings, what you're
actually storing in the array is a bunch of
object references to the string instances

those object references are all gonna be the
same size

That’s why you can have an object array
and store any type of object in there. It's
because the object references to the
different instances are always the same
size.

Calculating Memory Address Based on

Index

If an array starts at memory address x x

size of each element in the array is y

calculaing the memory address of X

element i by using the following T

expression: *
y

Arrays

http://www.cheatography.com/
http://www.cheatography.com/bayan-a/
http://www.cheatography.com/bayan-a/cheat-sheets/data-structures-and-algorithms
https://cheatography.com/uploads/bayan-a_1590196309_bigO.png

By Bayan (Bayan.A)
cheatography.com/bayan-a/

Stored as one contiguous block in memory.

Stored as one block with a static length, not
spread out

Each element occupies the same amount of
space in memory.

Every value of an int array occupies 4bytes
in memory, not differing between elements.

you create an array of objects, what's
stored in the array elements is a reference
to those objects,

object references are always the same size
regardless of the type of object they're
referring to.

Not published yet. Sponsored by Readable.com
Last updated 1st December, 2022. Measure your website readability!
Page 1 of 2. https://readable.com

http://www.cheatography.com/bayan-a/
https://readable.com

	Data Structures and Algorithms Cheat Sheet - Page 1
	Data Structures
	Constant Time Complexity
	Linear time complexity
	Calcul­ating Memory Address Based on Index
	Algorithms
	Big O Notation
	Big O Graph
	Arrays

