Geometry Final Cheat Sheet Cheat Sheet

Statements	
conditional	an "if, then" statement (p->q)
converse	switches hypothesis and conclusion (q->p)
biconditional	combination of condition and its converse "if and only if""
Law of conditional, and hypothesis is true, conclusion is true Detachment Law of when one true conditional is the same as the hypothesis is another true statement Syllogism the negation changes truth value negation negates hypothesis and conclusion inverse switches hypothesis and negates both contrapositiv	

Properties	
Equality	if $a=b$, then $a+c=b+c$
addition property	if $a=b$, then $a-c=b-c$
subtraction property	if $a=b$, then $a c=b c$
multiplication property	a $=a$
reflexive property	if $a=b$, then $b=a$
transitive property	$A B=A B, A=A$
substitution property	if $A B=C D$, then $C D=A B$
Congruence	if $A B=C D$ and $C D=E F$, then $A B=E F$
reflexive property	
symmetric property	
transitive property	

Triangles	
Congruence	
ASA	angle, included side, angle
AAS	angle, angle, non-included side
SSS	side, included angle, side
SAS	hypotenuse, leg
HL	
CPCTC	opposite/adjacent
Right Triangles proved congruent	
tangent (tan)	opposite/hypotenuse
sine (sin)	

Triangles (cont)	
cosine (cos)	adjacent/hypotenuse
Special Right Triangles	
$45-45-90$	legs: congruent, hyp: $\sqrt{ } 2$ (leg)
$30-60-90$	hyp: 2 (short leg) long leg: $\sqrt{ } 3$ (short leg)
Similarity	

AA~	two angles equal
SAS \sim	ratio of sides is equal, included angle congruent

SSS~ all side ratios equal

Pythagorean Theorem	$\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$ (right)
obtuse	$\mathrm{c}^{2}>\mathrm{a}^{2}+\mathrm{b}^{2}$
acute	$\mathrm{c}^{2}<\mathrm{a}^{2}+\mathrm{b}^{2}$

Triples $\quad(3,4,5)(5,12,13)(8,15,17)$

Other	
if, $\mathbf{a}+\mathbf{b}>\mathbf{c}$	then, three sides form a triangle
Tangent Lines	line that intersects circle at one point
tangent	where circle and tangent intersect
point of tangency	the two segments from one point of tangency
congruent segments	

Properties of Parallel Lines	
transversal	line that intersects two coplanar lines at distinct points
alternate interior angles	opposite side of transversal inside of two lines
same side interior angles	same side of transversal inside of two lines
corresponding angles	overlap if overlaid
same side exterior angles	same side of transversal outside of two lines
alternate exterior angles	opposite side of transversal outside of two lines

[^0]

By baseballboy123
Not published yet.
Last updated 5th June, 2016.
Page 1 of 2 .

[^1]cheatography.com/baseballboy123/

Formulas	
AREA	degrees "represented" $\times \pi r^{2}$
sector	πr^{2}
circle	$1 / 2$ bh or $1 / 2 \mathrm{bc}(\sin \mathrm{A})$
triangle	$1 / 2 \mathrm{~h}\left(\mathrm{~b}^{1}+\mathrm{b}^{2}\right)$
trapezoid	$1 / 2\left(\mathrm{~d}^{1}\right)\left(\mathrm{d}^{2}\right)$
kite or rhombus	bh
rectangle	$2 \pi r$ or πd
parallelogram	central angle/360 $\times 2 \pi r$
Length	
circumference	
arc length	
Coordinate Geometry	
distance	
midpoint	

Circles in Triangles	
point of concurrency	point at which 3 or more lines intersect
circumcenter	point of concurrency, (p. bisectors)
circumscribed circle	through all vertices
incenter	point of concurrency, (a. bisectors)
inscribed circle	largest contained circle
median of triangle	point of concurrency, (medians)
centroid	p. segment, vertex to opposite side
altitude	

Vectors	
vector	any quantity with magnitude (size) and direction
resultant vector	$\boldsymbol{a}+\boldsymbol{c}=\left\langle\mathrm{x}^{1}, \mathrm{x}^{2}\right\rangle\left\langle\mathrm{y}^{1}, \mathrm{y}^{2}\right\rangle$

By baseballboy123
cheatography.com/baseballboy123/

Not published yet.
Last updated 5th June, 2016.
Page 2 of 2.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

[^0]: CONVERSES -> PARALLEL LINES

[^1]: Sponsored by ApolloPad.com
 Everyone has a novel in them. Finish Yours!
 https://apollopad.com

