

by BarplotNorm via cheatography.com/203294/cs/43288/

Basic Math			
exp(x)	Exponential	sum(x)	Sum
log(x)	Natural log	cumsum(x)	Cumulative Sum
max(x)	Largest element	ceil(x)	Round up
min(x)	Smallest element	floor(x)	Round down
х %% у	Modulo		

```
Control Flow

for (variable in sequence) {...} for-loop. If the loop body contains only a single line, the curly brackets can be omitted.

while (condition) {...} while-loop

if (i > 5) {
    if-else-block
    ...

else {
    ...
}

foo = function(arg1, arg2, ...) {
    return (var)
}
```

Vectors	
Creating Vectors	
c(2, 4, 6)	Join elements into a vector
2:6	An integer sequence (end inclusive!)
seq(2,3, by=0.5)	Complex sequence (s. np.linspace)
rep(1:2, 3)	Repeat vector
rep(1:2, 3:4)	Repeat each element
Functions	
sort(x)	Return x sorted.
rev(x)	Return x reversed.
unique(x)	See unique values.
length(x)	Length of x.
Selecting Vector Elements	

By BarplotNorm

Not published yet. Last updated 31st January, 2025. Page 1 of 9. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

by BarplotNorm via cheatography.com/203294/cs/43288/

Vectors (cont)	
By Position	
x[4]	The fourth element
x[-4]	All but the fourth.
x[2:4]	Elements two to four
x[-(2:4)]	All elements except 2 to four
x[c(1, 5)]	Elements one and five.
By Value	
x[x == 10]	All elements equal to 10
x[x < 10]	All elements less than 10.
x[x %in% c(1, 2, 5)]	Elements in the given set.
Named Vectors	
x['apple']	Element with name 'apple'.

Tables	
table(data)	get absolute frequencies of values
as.num eri c(tab); as.vec tor (tab)	Extract values and their absolute frequencies from table
tab/le ngt h(data)	Compute relative frequencies

Matrices	
m = matrix(x, nrow = 3, ncol = 3)	Create a matrix from vector x
t(m)	transpose
m %*% n	Matrix multiplication
solve(m, n)	Find x in $m * x = n$
det(m)	Determinant
eigen(m)	Find eigen vectors and values

Data sets	
Data=data.frame(price=c(11,20,14,15), number=c(40,50,60,20))	Create a data set
Interacting with data sets	
<pre>col_1 = data\$c ol_ 1_name</pre>	Access column data
Data[1,2]; Data[,2]; Data[[1]]	Access data with index notation
I/O	

By BarplotNorm

Not published yet. Last updated 31st January, 2025. Page 2 of 9. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

by BarplotNorm via cheatography.com/203294/cs/43288/

Data sets (cont)	
data = read.c sv(" fil e.c sv", header =FALSE, sep="")	Read csv (function arguments similar to that used in pandas)
<pre>write.c sv (data, " dat a.c sv", row.na mes =FALSE, sep= ")</pre>	" Write data set as csv
Filter	
<pre>df[df\$kids == " Jac k",]</pre>	Filter data frame
<pre>subset(df, kids== " Joh n" & Grade == 1.3)</pre>	Filter multiple columns
<pre>subset(df, kids %in% c("J ack ", " Joh n"))</pre>	Filter a column with multiple values
unique (ho using[, c("S tat e", " reg ion ")])	Extract unique rows
Sort	
housin g[o rde r(h ous ing \$Ho me.V alue),]	Order data frame in ascending order
housin g[o rde r(h ous ing \$Ho me.V alue, decreasing = T : UE),]	order data frame in descending order
Meta	
dim(df)	Check the dimensions of a data frame
colnam es(d)	Return the column names
Manipulate data	
Data_F ram e_New <- Data_F ram e[- c(1), -c(1)]	Remove columns and/or rows from data frame
rbdind (df_1, df_2)	Combine data frames vertically
I/O	
write(data, " myd ata.da t")	Write data as binary.
scan("m yda ta.d at ")	Read binary data.
getcwd()	Current working directory
Random Numbers	
sample (1: 3,p rob =c(1/6 ,1/ 3,1 /2) ,re pla c	balls, labeled from 1 to 3, from box with replacement.
r <d id="" istr.="">(n, params) Draw n</d>	numbers from distribution <distr. id=""> with parameters params</distr.>

By BarplotNorm

(see Distributions in R for more details)

Not published yet. Last updated 31st January, 2025. Page 3 of 9. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

by BarplotNorm via cheatography.com/203294/cs/43288/

Characteristics of data sequences		
mean(x)	Arithmetic mean of the data sequence	
var(x)	Variance	
median(x)	Median	
<pre>quanti le(x, type=7)</pre>	Quantile. $type=7$ is the default computation algorithm, i.e. the function returns the value at position $k=1+p (n-1)$, if this is an integer. Otherwise, R computes a weighted mean of the two neighboring integers	
<pre>quanti le(x, type=1)</pre>	General inverse function of the ECDF (smallest p-quantile). Largetst p-quantile can be obtained indirectly by slightly increasing p	
summary(x)	Overview of important measures	
cov(x,y)	Covariance	
cor(x,y)	Correlation	

Distri	bution	s in R

Genera	usage
Genera	usage

Gerierai usage	
d <d id="" istr.=""> (pa rams)</d>	density function
q <d id="" istr.=""> (pa rams)</d>	quantile function. Always computes the smallest quantile
p <d id="" istr.=""> (pa rams)</d>	cumulative distribution function
r <d id="" istr.=""> (pa rams)</d>	random variate generation
Distributions	
<pre>dbinom(x, size=p, prob=p)</pre>	Binomial
dchisq(x, df, ncp=0)	Chi-squared Chi-squared
dexp(x, rate=1)	Exponential
dgamma(x, shape=r, rate=1)	Gamma
dgeom(x, prob=p)	Geometric
<pre>dnbinom(x, size, prob)</pre>	Negative binomial
<pre>dnorm(x, mean=0, sd=1)</pre>	Normal
dpois(x, lambda)	Poisson

dt(x, df, ncp)

By BarplotNorm

Not published yet. Last updated 31st January, 2025.

t-distribution Uniform

Page 4 of 9.

Sponsored by **Readable.com**Measure your website readability!
https://readable.com

cheatography.com/barplotnorm/

dunif(x, min=0, max=1)

by BarplotNorm via cheatography.com/203294/cs/43288/

Plotting	
Basic plots	
plot(data)	Plot quick overview.
plot(x, y, xlab="m u", ylab="P owe r", type="l ", col="re d", ylim=c (0,1), lw d=1.5)	Plot data with custom style options
Lines and curves	
abline (a, b,c ol= " red ")	Add a red line with intercept \mathtt{a} and slope \mathtt{b} to the plot.
abline (v= a,c ol= " red ")	add vertical line at x=a
abline (h= b,c ol= " red ")	add horizontal line at y=b
lines(x, y, col="gr een ", lwd=1.5)	Add a generic line
<pre>curve(sin ,-p i,p i,a dd= TRUE)</pre>	Draw a curve of a function over the specified interval
Data visualization	
plot.e cdf (data)	Plot ECDF.
<pre>barplot(x, main="T itl e", xlab="x label")</pre>	Annotated barplot of absolute frequencies
hist(data, prob=TRUE, breaks=30)	Histogram of relative frequencies (30 bins).
rug(data)	1D-plot
boxplo t(d ata1, data2,, range =1.5)	Plot boxplots of one or more data sequences in one window. range determines the extend of the whiskers. Default range=1.5, i.e. 1.5 x IQR
qqnorm(x)	QQ-Plot against standard normal distribution
<pre>qqPlot(x, dist="u nif " ,)</pre>	QQ-Plot against any R-standard distribution. Additional arguments such as df, ncp can also be specified.
legend (x,y, legend =c(" n=1 0"), col =c(" red "), lty=1, cex=0.8)	Add legend to plot as position (x, y)

Statistical hypothesis testing

One-Sample tests

t.test (x, mu= mu0 ,al t="l ess ", conf.l eve l=1 -alph Performs one and two sample t-tests on vectors of data.

By BarplotNorm

Not published yet. Last updated 31st January, 2025. Page 5 of 9. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

by BarplotNorm via cheatography.com/203294/cs/43288/

Statistical hypothesis testing (cont)	
<pre>power.t.t est(n = 100, delta=0.1, sd=2, sig.le vel =0.1, type="o ne.s am ple ", alt="on e .s ide d")</pre>	Compute the power of the one- or two-sample t test, or determine parameters to obtain a target power.
<pre>binom.t es t(s um(x), n,p 0,a lt= " gre ate r", conf.l eve l=1 -alpha)</pre>	Performs an exact test of a simple null hypothesis about the probability of success in a Bernoulli experiment. It might happen that the decision based on the p-value differs from that of the confidence interval. Choose the decision based on the p-value in such cases.
Two-Sample tests	
t.test (sh oes \$A, sho es\$ B,p air ed= FALSE, var.eq ual =TRUE)	Example for an unpaired sample t-test
<pre>var.te st(x,y ,co nf.l ev el= 1-a lpha)</pre>	Performs an F test to compare the variances of two samples from normal populations.
GOF tests	
<pre>shapir o.t est(x)</pre>	Performs the Shapiro-Wilk test of normality.
chisq.t es t(t abl $e(x)$, $p=p_0$)	Test for distribution with probabilities p _0. If p is not specified, R tests for a uniform distribution
<pre>chisq.t es t(t abl e(x), p=p_0, simula te.p.v alu e=TRUE)</pre>	Do not use Chi ² -approximation to calculate the p-value

<pre>pwr.ch isq.te st(w=ncp, df=s-1, sig.le vel =alpha, power=0.9)</pre>	Determine the number of samples needed to reach the desired power at the given signif- icance level
ks.test(x, " pno rm", 0, 1)	One-sample Kolmogorov-S- mirnov test against hypothetical distri- bution
lillie.te st(x)	Lilliefors (Kolmo- gorov-Smirnov) test for the composite hypothesis of normality
Tests of independence	
<pre>chisq.t est(M)</pre>	Chi ² -test of independence. M hast to be a matrix! (contingency table)

By BarplotNorm

Not published yet. Last updated 31st January, 2025. Page 6 of 9. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

by BarplotNorm via cheatography.com/203294/cs/43288/

Statistical hy	حند حطف حدد	A	(A)
SIZHSHOZI O	voonnesis		

fisher.te st(M) Exact test of Fisher. If the table entries are too large, use simula te.p.v alu e=TRUE

runs.t est(x) Runs test of independence. x hast to be a factor (use as.fac tor() if necessary)

Runs Test of Randomness	
rle(x)	Compute the lengths and values of runs of equal values in a vector .
rle(x) \$le ngths	Vector containing the length of each run.
rle(x) \$values	Vector of the same length as lengths with the corresponding values.

Opunization	
nlm(E2 ,0.5)	Carries out a minimization of the function f using a Newton-type algorithm. May not give all solutions. The function must be vectorized
<pre>E2vec= Vec tor ize(E2, vector ize.ar gs= c ("n "))</pre>	vectorize a function. vector ize.args: explicitly state arguments to be vectorized.
Distribution Fit	
fitdis tr(x, " Poi sso n")	Maximum-likelihood fitting of univariate distributions, allowing parameters to be held fixed if desired. (librar y (MASS))
Regression	
reg=lm (x~t)	Fit a linear function x=a+bt
summar y(reg)	Obtain further information about regression result Important fields: - Residual standard error: sd of residuals (with normalization n-2) -t value: Test null hypothesis "estimate is 0" with assumption of a normally distributed random mechanism -multiple R-squared: squared corr. coef. Null hypothesis r ² =0 is tested with F-statistic

By BarplotNorm

Not published yet. Last updated 31st January, 2025. Page 7 of 9. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

by BarplotNorm via cheatography.com/203294/cs/43288/

Optimization (cont)	
$reg=lm(x \sim t+ I(t^2))$	Fit a polynomial function. I () inhibits R from interpreting ${\rm t}^2$ as a formula
<pre>form=x ~ a/(1+e xp(-b* (t-c))) reg=nl s(form, data=U SPop, start= c(a =40 0,b =0.0 2, - c=2 000))</pre>	perform non-linear least-squares regression
plot(t ,pr edi ct(reg))	Plot regression result
Root finding	
res = uniroo t(func, c(0,10))	Searches interval for a root of the function func. res\$root and res\$f.root give the location of the root and the value of the function
Heln	function

пеір	
?sqrt	Display documentation of the command sqrt`
? ! % % !	use quotation marks for special characters

Miscellaneous	
Printing	
<pre>print(" Tex t")</pre>	Default print
sprint f("F orm atted %s: %.3f", object, me	Formatted print
an)	
(x=3)	enclose an R command with brackets to directly print the result
edit(x)	Invoke text editor on R object
Libraries	
librar y(MASS)	Load package MASS
uniroot(f, interval)	find 1D root
Step functions	
stepfu nc(x,y)	Given the vectors $(x_1,, x_n)$ and $(y_0,, y_n)$ (one value more!), returns an interp-
	olating 'step' function
knots(x)	returns jump positions of stepfunction

By BarplotNorm

Not published yet. Last updated 31st January, 2025. Page 8 of 9. Sponsored by **Readable.com**Measure your website readability!
https://readable.com