

Matrix Properties Cheat Sheet by Sudhansu Barkataki (barkataki_sudhansu) via cheatography.com/215458/cs/4694

Definition	
Leading Variables: variables corresponding to leading 1s.	Free Variables: variables with no pivot 1s.
Parameters: symbol (s, t,) for free variable.	Basic Solutions: vectors where s=1 and t,u,=0.
Rank A: number of leading 1s.	If A(m x n) and rank A = r, there are n-r free variables.
REF: leading 1s with 0s at the bottom.	RREF: leading 1s with 0s at the top and bottom.
Main Diagonal: a ₁₁ , a ₂₂ , a ₃₃ , entries of a matrix.	Diagonal Matrix: sq. matrix with entries outside main diagonal = 0.
Symmetric Matrix: sq. matrix where $A = A^{T}$.	Skew-symmetric: square matrix where $A^T = -A$.
Identity Matrix (I): square matrix where main diagonal entries = 1.	Zero Matrix: square matrix where all entries = 0.
Invertible Matrix: sq. matrix that has an inverse.	

Elementary Row Operations

- I. Interchange two rows.
- II. Multiply a row by non-zero integer.
- III. Add multiple of a row with another row.

Transposition Properties

If
$$A = [a_{ij}]$$
, then $A^T = [a_{ij}]$

If A is $(m \times n)$, then A^T is $(n \times m)$.

$$(A^T)^T = A$$

$$(kA)^T = kA^T$$

$$(A+B)^T = A^T + b^T$$

Matrix Inverse Properties

$$AA^{-1} = I = A^{-1}A$$

detA = ad - bc

$$adjA = [d -b]$$

[-c a

A is non-invertible if det A = 0.

$$A^{-1} = (1/detA)adjA$$

$$Ax = b \Rightarrow x = A^{-1}b$$

$$[A \quad I] \rightarrow [I \quad A^{-1}]$$

Addition and Scalar Multiplication Properties

A+B=B+A	commutativity
A+(B+C) =	associativity

(A+B)+C

$$A+(-A) = 0$$
 additive inverse

$$k(A+B) = kA+kB$$
 scalar distributivity

$$(kp)A = k(pA)$$
 scalar associativity

Matrix-Vector Multiplication Properties

 \mathbf{x} is the solution to $A\mathbf{x} = \mathbf{b}$

$$A(x+y) = Ax+Ay$$

$$A(a\mathbf{x}) = a(A\mathbf{x}) = (aA)\mathbf{x}$$

$$(A+B)x = Ax+Bx$$

Associated homogeneous system: Ax = 0

Matrix-Matrix Multiplication Properties

$$IA = A$$
 and $AI = A$

$$A(BC) = (AB)C$$

$$A(B+C) = AB+AC$$

$$(B+C)A = BA+CA$$

$$a(AB) = (aA)B = A(aB)$$

$$(AB)^T = B^T A^T$$

Idempotent:
$$A^2 = A$$

