
My One Cheat Sheet
by Balan275 via cheatography.com/163857/cs/36262/

VariablesVariables

Variable is a container which stores values.
But it cannot have reserved Keywords.

Rules for Variable Names:Rules for Variable Names:

* It must start with ‘letter’ or ’ _’

* It cannot start with number

* It can contain a-z,A-Z,0-9 and _

* Case sensitive. age and AGE different

KeywordsKeywords

Python keywords are special reserved
words that have specific meanings and
purposes and can't be used for anything but
those specific purposes. There are 35
Keywords in Python 3.

We can get List of Keywords by the
following command in REPL.

>>> help("keywords")

To get details of each Keyword

>>> help("pass")

To get current version available keywords
use below commands after import keyword
in REPL with snippet >>> import keyword

>>> keyword.kwlist

['False', 'None', 'True', 'and', 'as', 'assert',
'async', 'await', 'break', 'class', 'continue',
'def', 'del', 'elif', 'else', 'except', 'finally', 'for',
'from', 'global', 'if', 'import', 'in', 'is', 'lambda',
'nonlocal', 'not', 'or', 'pass', 'raise', 'return',
'try', 'while', 'with', 'yield']

>>> len(keyword.kwlist)

35

>>> keyword.iskeyword('try')

Keywords (cont)Keywords (cont)

True

Lets See All Python Keywords with UsageLets See All Python Keywords with Usage

Value Keywords: True, False, NoneValue Keywords: True, False, None

>>> x = True
>>> x is True

True

>>> x = 'True'
>>> x is True

False

>>> y = False
>>> y is False

True

>>> x = 'False'
>>> x is False

False

>>> x = ''
>>> x is True

False

>>> x = "this is a truthy value"
>>> x is True

False

>>> x = "this is a truthy value"
>>> bool(x) is True

True

>>> y = "" # This is falsy
>>> y is False

False

>>> y = "" # This is falsy
>>> bool(y) is False

True

>>> x = "this is a truthy value"
>>> if x is True: print("x is True") # Don't do
this

>>> if x: print("x is truthy") # Do this

x is truthy

>>> def func(): print("hello")
>>> x = func()

hello

Lets See All Python Keywords with UsageLets See All Python Keywords with Usage
(cont)(cont)

>>> def func(): print("hello")
>>> x = func()
>>> print(x)

None

'None' is also the default value returned by
a function if it doesn’t have a return
statement:

Operator Keywords: and, or, not, in, isOperator Keywords: and, or, not, in, is

Math
Operator

Other
Languages

Python
Keyword

AND, ∧ && and

OR, ∨ || or

NOT, ¬ ! not

CONTAINS,
∈

 in

IDENTITY === is

Examples of and, or, not, in, is..Examples of and, or, not, in, is..

>>> x = True
>>> y = False

>>> x and y

False

>>> x and not y

True

>>> x or y

True

>>> not x or y

False

>>> x is y

False

>>> x is not y

True

>>> not x is y

True

By Balan275Balan275
cheatography.com/balan275/

Not published yet.
Last updated 1st January, 2023.
Page 1 of 5.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/balan275/
http://www.cheatography.com/balan275/cheat-sheets/my-one
http://www.cheatography.com/balan275/
https://readable.com

My One Cheat Sheet
by Balan275 via cheatography.com/163857/cs/36262/

Examples of and, or, not, in, is.. (cont)Examples of and, or, not, in, is.. (cont)

>>> name = "Chad"
>>> "c" in name

False

>>> name = "Chad"
>>> "C" in name

True

Control Flow Keywords: if, elif, elseControl Flow Keywords: if, elif, else

x = ""
y = ""
z = ""
if x: print('x')
elif y: print('y')
else: print('z')

z

x = ""
y = "Hi"
z = ""
if x: print('x')
elif y: print('y')
else: print('z')

y

x = "Hi"
y = ""
z = ""
if x: print('x')
elif y: print('y')
else: print('z')

x

Iteration Keywords:Iteration Keywords:

Iteration Keywords: (cont)Iteration Keywords: (cont)

Break StatementBreak Statement
nums = [1,2,3,4,5,6,7,8,9,10]
total_sum = 0
for num in nums:
 total_sum += num
 print(num)
 if total_sum > 10:
 break
print("Total Sum:",total_sum)

1
2
3
4
5
Total Sum:15

Continue StatementContinue Statement
nums = [1,2,3,4,5]
total_sum = 0
for num in nums:
 total_sum += num
 print(num)
 if total_sum > 3:
 continue
 print("Check")
print("Total Sum:",total_sum)

1
Check
2
Check
3
4
5
Total Sum: 15

The else Keyword Used With LoopsThe else Keyword Used With Loops

 When else keyword used with a loop,
the else keyword specifies code that should
be run if the loop exits normally, meaning
break was not called to exit the loop early.

for i in range(1,5,1):
 print(i)
else:
 print("Finished")

1
2
3
4
Finished

Iteration Keywords: (cont)Iteration Keywords: (cont)

for n in range(2, 10):
 prime = True
 for x in range(2, n):
 if n % x == 0:
 prime = False
 print(f"{n} is not prime")
 break
 if prime:
 print(f"{n} is prime!")

2 is prime!
3 is prime!
4 is not prime
5 is prime!

for n in range(2, 10):
 for x in range(2, n):
 if n % x == 0:
 print(f"{n} is not prime")
 break
 else:
 print(f"{n} is prime!")

2 is prime!
3 is prime!
4 is not prime
5 is prime!

Structure Keywords:Structure Keywords:

def, class, with, as, pass, lambdadef, class, with, as, pass, lambda

The def KeywordThe def Keyword

Python’s keyword defdef is used to define a
function or method of a class.

The basic syntax for defining a function
with defdef looks like this:

def <function>(<params>):
 <body>

ExampleExample
def func():
 print('Hi')
x = func()

Hi

The class KeywordThe class Keyword

Classes are powerful tools in object-or‐
iented programming, To define a class in
Python, you use the classclass keyword.

http://www.cheatography.com/
http://www.cheatography.com/balan275/
http://www.cheatography.com/balan275/cheat-sheets/my-one

for, while, break, continue, elsefor, while, break, continue, else

for Loopfor Loop
>>> for num in range(1, 4):
 print(num)

1
2
3

>>> people = ["Kevin", "Creed", "Jim"]
>>> for person in people:
 print(f"{person} is in Office.")

Kevin is in Office.
Creed is in Office.
Jim is in Office.

while Loopwhile Loop
>>>n = 3
>>>while n>0:
 n=-1
 print(n)

2
1
0

for i in range(1,5,1):
 print(i)
 if i>3:
 break
else:
 print("Finished")

1
2
3
4

By Balan275Balan275
cheatography.com/balan275/

Not published yet.
Last updated 1st January, 2023.
Page 2 of 5.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/balan275/
https://readable.com

My One Cheat Sheet
by Balan275 via cheatography.com/163857/cs/36262/

Structure Keywords: (cont)Structure Keywords: (cont)

The general syntax for defining a class with
classclass is as follows:

class MyClass(<extends>):
 <body>

ExampleExample

The with KeywordThe with Keyword

Using withwith gives you a way to define
code to be executed within the context
manager’s scope. The most basic
example of this is when you’re working
with file I/O in Python.

The general syntax for using withwith is as
follows:

with <context manager> as <var>:
 <statements>

 Context managersContext managers are a really helpful
structure in Python. Each context managercontext manager
executes specific code before and after the
statements you specify.
 If you wanted to open a file, do
something with that file, and then make sure
that the file was closed correctly, then you
would use a context managercontext manager. Consider this
example in which names.txt contains a list
of names, one per line:

ExampleExample
with open("names.txt") as input_file:
 for name in input_file:
 print(name.strip())

Jim
Pam
Cece

 The file I/O context managerI/O context manager provided
by open()open() and initiated with the withwith
keyword opens the file for reading, assigns
the open file pointer to input_file, then
executes whatever code you specify in the
with block. Then, after the block is
executed, the file pointer closes. Even if
your code in the with block raises an
exception, the file pointer would still close.

Structure Keywords: (cont)Structure Keywords: (cont)

The as Keyword Used With withThe as Keyword Used With with

If you want access to the results of the
expressionexpression or context managercontext manager passed
to withwith, you’ll need to alias it using asas.
You may have also seen asas used to
alias imports and exceptionsimports and exceptions, and this is
no different. The alias is available in the
with block:

The Basic syntax for using asas is given
below:

with <expr> as <alias>:
 <statements>

Most of the time, you’ll see these two
Python keywords, withwith and asas, used
together

The pass KeywordThe pass Keyword

Since Python doesn’t have block
indicators to specify the end of a block,
the passpass keyword is used to specify that
the block is intentionally left blank. It’s
the equivalent of a no-opno-op, or nono
operationoperation.

Here are a few examples of using pass to
specify that the block is blank:

def my_function():
 pass

class MyClass:
 pass

if True:
 pass

The lambda KeywordThe lambda Keyword

The lambdalambda keyword is used to define a
function that doesn’t have a name and
has only one statement, the results of
which are returned. Functions defined
with lambda are referred to as lambdalambda
functionsfunctions:

The Basic syntax of using lambdalambda keyword
given below:

lambda <args>:: <statement>

Structure Keywords: (cont)Structure Keywords: (cont)

A basic example of a lambda functionlambda function that
computes the argument raised to the power
of 10 would look like this:

p10 = lambda x: x**3

This is equivalent to defining a function with
def:

def p10(x)::
 return x**3

The above examples return the value 88.

One common use for a lambdalambda function is
specifying a different behavior for another
function. For example, imagine you wanted
to sort a list of strings by their integer
values. The default behavior of sorted()sorted()
would sort the strings alphabetically. But
with sorted()sorted(), you can specify which key the
list should be sorted on.

A lambda function provides a nice way
to do so:::
>>> ids = ["id1", "id2", "id30", "id3", "id2‐
0", "id10"]
>>> sorted(ids)
['id1', 'id10', 'id2', 'id20', 'id3', 'id30']

>>> sorted(ids, key=lambda x: int(x[2:]))
['id1', 'id2', 'id3', 'id10', 'id20', 'id30']

This example sorts the list based not on
alphabetical order but on the numerical
order of the last characters of the strings
after converting them to integers. Without
lambda, you would have had to define a
function, give it a name, and then pass it to
sorted(). lambda made this code cleaner.

By Balan275Balan275
cheatography.com/balan275/

Not published yet.
Last updated 1st January, 2023.
Page 3 of 5.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/balan275/
http://www.cheatography.com/balan275/cheat-sheets/my-one
http://www.cheatography.com/balan275/
https://readable.com

My One Cheat Sheet
by Balan275 via cheatography.com/163857/cs/36262/

Returning Keywords: return, yieldReturning Keywords: return, yield

There are two Python keywords used to
specify what gets returned from functions or
methods: return and yield. Understanding
when and where to use return is vital to
becoming a better Python programmer. The
yield keyword is a more advanced feature of
Python, but it can also be a useful tool to
understand.

The return KeywordThe return Keyword

Python’s returnreturn keyword is valid only as
part of a function defined with def. When
Python encounters this keyword, it will
exit the function at that point and return
the results of whatever comes after the
returnreturn keyword:

Basic Syntax for using returnreturn given below:

def <function>()::
 return <expr>

When given no expression, returnreturn will return
None by default:

>>> def return_none()::
 return

>>> return_none()
>>> r = return_none()
>>> print(r)
None

Most of the time, however, you want to
return the results of an expression or a
specific value:

>>> def plus_1(num)::
 return num + 1

>>> plus_1(9)
10
>>> r = plus_1(9)
>>> print(r)
10

Returning Keywords: return, yield (cont)Returning Keywords: return, yield (cont)

You can even use the return keyword
multiple times in a function. This allows you
to have multiple exit points in your function.
A classic example of when you would want
to have multiple return statements is the
following recursive solution to calculating
factorial:

def factorial(n)::
 if n == 1::
 return 1
 else:
 return n * factorial(n - 1)

In the factorial function above, there are two
cases in which you would want to return
from the function. The first is the base case,
when the number is 1, and the second is the
regular case, when you want to multiply the
current number by the next number’s
factorial value.

The yield KeywordThe yield Keyword

 Python’s yieldyield keyword is kind of like
the return keyword in that it specifies
what gets returned from a function.
However, when a function has a yield
statement, what gets returned is a
generatorgenerator. The generator can then be
passed to Python’s built-in next()next() to get
the next value returned from the
function.
 When you call a function with yield
statements, Python executes the
function until it reaches the first yield
keyword and then returns a generator.
These are known as generator
functions:

Basic Syntax of using yieldyield statement given
below:

def <function>()::
 yield <expr>

Returning Keywords: return, yield (cont)Returning Keywords: return, yield (cont)

The most straightforward example of this
would be a generator function that returns
the same set of values:

>>> def family()::
 yield "Pam"
 yield "Jim"
 yield "Cece"
 yield "Philip"

>>> names = family()
>>> names
<generator object family at
0x7f47a43577d8>
>>> next(names)
'Pam'
>>> next(names)
'Jim'
>>> next(names)
'Cece'
>>> next(names)
'Philip'
>>> next(names)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

Once the StopIterationStopIteration exception is raised,
the generator is done returning values. In
order to go through the names again, you
would need to call family()family() again and get a
new generator. Most of the time, a
generator function will be called as part of a
forfor loop, which does the next()next() calls for you.

TestTest

Hi
 I am

By Balan275Balan275
cheatography.com/balan275/

Not published yet.
Last updated 1st January, 2023.
Page 4 of 5.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/balan275/
http://www.cheatography.com/balan275/cheat-sheets/my-one
http://www.cheatography.com/balan275/
https://readable.com

	My One Cheat Sheet - Page 1
	Variables
	Lets See All Python Keywords with Usage
	Rules for Variable Names:
	Operator Keywords: and, or, not, in, is
	Keywords
	Examples of and, or, not, in, is..

	My One Cheat Sheet - Page 2
	Control Flow Keywords: if, elif, else
	Structure Keywords:
	Iteration Keywords:

	My One Cheat Sheet - Page 3
	My One Cheat Sheet - Page 4
	Returning Keywords: return, yield
	Test

