\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{azten} \pdfinfo{ /Title (atmosphere-ionoshpere-and-radio-propagation.pdf) /Creator (Cheatography) /Author (azten) /Subject (Atmosphere, Ionoshpere \& Radio Propagation Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{143BFF} \definecolor{LightBackground}{HTML}{F0F2FF} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Atmosphere, Ionoshpere \& Radio Propagation Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{azten} via \textcolor{DarkBackground}{\uline{cheatography.com/18500/cs/1775/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}azten \\ \uline{cheatography.com/azten} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 21st September, 2020.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Atmosphere}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{gaseus envelope around a celestial body% Row Count 1 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Composition of Earth's Atmosphere}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Nitrogen = 78\% \newline % Row Count 1 (+ 1) Oxygen = 21\% \newline % Row Count 2 (+ 1) Argon = .9\% \newline % Row Count 3 (+ 1) Carbon Bomboxide = .036\%% Row Count 4 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Layers of Earth's Atmosphere}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Troposphere -\textgreater{} Stratosphere -\textgreater{} Mesosphere -\textgreater{} Ozone Layer of Doom -\textgreater{} Thermosphere% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Heterosphere}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Higher region of the atmosphere which constituents are no longer mixed by turbelence% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Homosphere}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Lower-middle atmosphere which features homogenous mixture of atmospheric gases% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{CREATION OF THE SOLAR SYSTEM}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Nebula Theory}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Instellar cloud of gas collapsing under its own gravity. Explains all major features of the solar system and its exceptions% Row Count 3 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Solar Nebular Hypothesis}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Rotating cloud of gas that contracts and flattens into a thin disc (leads to formation of planets) of gas and dust and the forming sun in the center.% Row Count 3 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Types of Planets}} \tn % Row 0 \SetRowColor{LightBackground} Joviaan: Large, have a lot of solids in their discs. Icy, rocky, metal core. & Terrestrial: Opposite of Jovian. (rocky metal core) \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Space Debris}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Comets: icy nucleus evaporated and sent to space by solar wind pressure} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Meteoroids: dust debris in space} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Asteroids: rocky bodies of mass diameters less that 1km} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{SUN BASICS}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Layers of the Sun}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Core:} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Radiative Layer: no electrons to trap photons (transparent)} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Convective Layer: non ionized gases capture photons (opaque)} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Photosphere: density decrease} \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Chromoshpere: can't see due to low density} \tn % Row Count 7 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Transition Zone} \tn % Row Count 8 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Corona} \tn % Row Count 9 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Hydrostatic Equilibrium}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Pressure balances the gravitational pull the center of the "SPHERICAL" body% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Suns spots}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Magnetic phenomena which occurs in the photosphere. Occurs in pairs each member with opposite polarity.% Row Count 3 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Solar Prominence}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Large bright gas features inside the sunspots. Horse shoe shape% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Nuclear Fusion}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{H + H -\textgreater{} 2H + neutrino + positron} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{2H + H -\textgreater{} 3He + gamma ray} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{3He + 3He -\textgreater{} He + H + H + ENERGY} \tn % Row Count 3 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Ionoshpere}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Region of thermosphere where the Sun's UV radiation ionizes oxygen molecule to a positive ion and free electron.% Row Count 3 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{3.53367 cm} x{1.44333 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Layers of the Ionosphere}} \tn % Row 0 \SetRowColor{LightBackground} D Layer (night change) & 60-90km \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} E Layer (night change) & 90-140km \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} F1 Layer & 140-200km \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} F2 Layer & 200-500km \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Virtual Height}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Height from which the radio waves appear to reflect.% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Critical Angle}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Angle a radio wave must be transmitted at to ensure reflection back to earth% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Critical Frequency/Plasma Frequency}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Highest frequency that at which radio wave transmitted straight up will get reflected back.% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Reasons for D E \& F Layers}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Solar Decomposition: depends on the UV absorption of the atmosphere} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Physics of Recombinatorial factorization: depends on the density of atoms} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Atmospheric composition: types of atoms at different heights} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Differential Energy Absorption}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{dI = (sigma)(n)(I)(dS)} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{sigma = energy abosrption per unit volume} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{n = particle densitometer} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{I = intensity from the sun} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{dS = length of the layer} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Ionization Rate}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{q = (sigma)(p)(n)(I)} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{p = number of particles} \tn % Row Count 2 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Ionograms}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Plot of virtual height of the ionosphere vs the frequency} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Produced by ionosondes, transmitting vertically up into atmosphere} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{MAGNETOSPHERE}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Plasma Sheet}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Slab-like particle population centered at the mid plane of the magneto tail. Divides into north and south lobes% Row Count 3 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Magnetopause Current}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Divides the earths magnetic field and plasma from solar wind. Induced current as a result of magnetic field deflection% Row Count 3 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Types of Particle Motion}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Gyration: gyration of charge particles along geo magnetic field lines} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Bounce: charged particles trapped in magnetic mirrors trapped in north and south} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Drift: charged particles experience gradient and curvature drifts to the west for protons and east for electrons} \tn % Row Count 7 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Magnetic Mirror}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Charged particles move in helical orbits at their cyclotron% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Electromagnetic Wave}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Radiation with electric and magnetic components oscillating at same frequency. Used to transmit information by wave motion.% Row Count 3 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Radio Waves}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{features air waves moving across the atmosphere. reflects off of clouds or layers of ionosphere.% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Types of Radio Wave Propagation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Attenuation} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Reflection} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Refraction} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Diffraction} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Types of Radio Waves}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Ground wave: follows the curvature of the earth on the surface as a result of earths electrical characteristics. (Direct and Reflected)} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Sky wave: gets reflected by the ionoshpere} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Space wave: shoots through to space} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Amplutide Modulation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Amplitude of carrier wave is made to vary with the incoming signal.% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Frequency modulation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Frequency of the carrier wave is made to vary with incoming signal% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{SEMICONDUCTORS}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.4931 cm} x{3.4839 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Types of Semiconductor Atoms}} \tn % Row 0 \SetRowColor{LightBackground} Group III & B \& Al \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Group IV & Carbon \& Silicon \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} Group V & Nitrogen \& Phosphorus \tn % Row Count 3 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Intrinstic Semiconductors}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Features 2 Group IV atoms in convalent bonds. Constant concentration of electron-hole pairs active at room temperature as a result of thermal energy. Ohmic relationship.% Row Count 4 (+ 4) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.73735 cm} x{2.23965 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Extrinsic Semiconductors}} \tn % Row 0 \SetRowColor{LightBackground} N-Type & P-Type \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Atom with 5 valence electrons & Atom 3 valence electrons \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} Majority carrier electron & Majority carrier holes \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Diodes}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Combine P and N type semiconductors in a lattice.% Row Count 1 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Rectification}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Converting AC to DC. Remember half-wave and full wave rectification% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{BACKGROUND PHYSICS}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Radiance}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Power passing through unit area in unit solid angle about the normal to the area.% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Irradiance}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Power passing through the unit area.% Row Count 1 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Scattering}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Photons get deflected from incident direction by intermediary particles without energy loss.% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Types of Scattering}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Rayleigh: photons collide elastically with the atmospheric molecules.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Mie} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Non selective} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Rayleigh Scattering}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Why does the sky look blue?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}light scatters in all directions at an intensity of (1+cos\textasciicircum{}(2) (x))*lamba\textasciicircum{}-4} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Aerosols}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Atmospheric mixture strong enough to lift up particles into the atmosphere% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.04057 cm} x{2.93643 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Types of Aerosols}} \tn % Row 0 \SetRowColor{LightBackground} Natural & Anthropogenic \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Sea salts & Pollution \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Volcanoes} \tn % Row Count 3 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Radiative Transfer Equation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{-absorptivity + emittance - scattering out + scattering in} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}