

Grade 10 Science Reviewer -2nd Quarter Cheat Sheet by Aya.Rivera (Aya.Rivera) via cheatography.com/216193/cs/47189/

 $3.0 \times 10^8 \text{ m/s}.$

Pioneers of Electromagnetism			Pioneers of Electromagnetism (cont)			
Scientist	Contri- bution	Key Concept	James	Mathem-	Unified	
Hans Christian Oersted	Discovered that an electric current produces a magnetic field.	Electr- oma- gnetism link	Clerk Maxwell	atically predicting EM waves and confirming light is an EM wave.	Theory of Electr- oma- gnetism	
André Marie Ampère	Developed the mathem- atical relati- onship between electric current and the magnetic field	Direction of Current	Heinrich Hertz	Experimentally confirmed Maxwell's predictions by generating and detecting Radio Waves in his lab.	Experi- mental Confir- mation of EM Waves	
	(Ampère's Law).					
				magnetic Wav	es	
Michael Faraday	Discovered electromagnetic induction (a changing magnetic field	Electr- oma- gnetic Induction	EM Waves are disturbances that propagate through space and matter, transferring energy. They are produced by the vibration or acceleration of charged particles. Nature: They are transverse waves (vibrations are perpen-			

Speed: All EM waves travel at the same speed in a vacuum: the Speed of Light (*c* = approx.

Electromagnetic Waves (cont)

Electric Field (*E*) and Magnetic Field (*B*) are perpendicular to each other and to the direction of wave propagation.

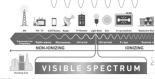
FI

Electromagnetic Spectrum				
EM Wave	Practical Uses			
Radio Waves	Communication (AM/FM), TV, MRI, Radar			
Microwaves	Cooking, Satellite communication, GPS, Wi-Fi			
Infrared	Remote controls, Thermal imaging, Night vision, Heaters, Camera Autofocusing			
Visible Light	Seeing, Photos- ynthesis, Fiber Optics			
Ultraviolet Rays	Sterilization, Tanning beds, Checking Bankbook signature, Detecting counterfeit money			

Medical imaging,

Security scans

Electromagnetic Spectrum (cont)


Gamma Cancer treatment

Rays (radiotherapy), Sterilization of equipment,

Checking inside of steel oil pipe, Water sterilization

The Electromagnetic Spectrum

Properties of EM Waves

ELECTROMAGNETIC WAV

- Frequency how many waves per second a wavelength produces
- Wavelength measures the length of individual wave in meters

Characteristics of EM Waves

ELECTROMAGNETIC WA

Speed of Electromagnetic Wave = Speed of Light

↓Wavelength = ↑Frequency ↑Wavelength = ↓Frequency Inversely Proportional

Law of Reflection

Law of Reflection

1. The incident ray, the reflected ray, and the normal (a line perpendicular to the surface at the point of incidence) all lie in the same plane.

By ch

produces

an electric

current).

Invented

erator

principle.

the electric motor/gen-

By Aya.Rivera (Aya.Rivera) cheatography.com/aya-rivera/

Published 16th October, 2025. Last updated 16th October, 2025. Page 1 of 2.

X-Rays

dicular to the direction of wave

travel) and are non-mechanical

(don't require a medium, can

travel in a vacuum).

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

Grade 10 Science Reviewer -2nd Quarter Cheat Sheet by Aya.Rivera (Aya.Rivera) via cheatography.com/216193/cs/47189/

Law of Reflection (cont)

2. The angle of incidence (Angle i) is equal to the angle of reflection (Angle r).

Images on Plane Mirrors

Location: distance from mirror to image is equal to distance from mirror to object.

Orientation: always upright Size: same size as the object Type: always virtual

- Image formed in a plane mirror is Laterally Inverted - left and right are switched.

Multiple Reflections

To calculate the number of images that are formed we place the plane mirrors tilted at an angle to each other, using the

N = (360/angle) - 1where: N is the number of images formed.

If the mirrors are parallel (facing each other), they form an infinite number of images.

Curved Mirrors / Spherical Mirrors

Concave / Curves Depends on object Converging inward Mirror (like an position; inverted can be Real/V-C) irtual, Inverted/Upright, Magnified/Reduced Convex / Curves Always

C)) Smaller Uses of Concave Mirrors: Used in Dentistry, Shaving mirrors, headlights, Astron-

omical telescopes, etc.

outward

(like the

letter

Virtual,

Upright,

and

Diverging

Mirror

Uses of Convex Mirrors: Side-view & Rear-view mirrors, Security Mirror (in grocery stores etc.), Traffic Mirrors, ATM convex mirror, etc.

Key Terms (Curved Mirrors)

Center of Curvature (C): center of the sphere from which the mirror section is taken.

Focus or Focal Point (F): point where parallel rays converge (concave) or appear to diverge from (convex).

Principal Axis: the line passing through C and F.

Vertex E (ME): the center of the

Focal Length (f): distance from F to the vertex E.

1. Light do not actuall

The image is generally erec

Image cannot be obtained on

This image is behind the

5. We can't reach to it.

6. E.g. :- Our image in plane

Real vs Virtual Image

1. Light rays actually meet to form a real image

The image is generally

4. This image is in front of

5. We can reach to it.

6. E.g. :- Cinema screer

inverted. Image can be obtained

IMAGE FORMATION IN A CONVEX MIRROR

	IMAGE			
Location of Object	Location	Orientation (upright or inverted)	Size (same, smaller or larger)	
CONVEX F. Farther than C in front of the Mirror.	Behind the mirror	upright	smaller	
G. Between F and V in front of the mirror	Behind the mirror	upright	smaller	

Curved Mirrors / Spherical Mirrors

A curved mirror is a reflecting surface in which the reflective surface is a section of sphere. There are two kinds of curved mirrors, the concave and the convex mirrors. A spoon is a

kind of a curved mirror with both form a virtual image. concave and convex mirror.

IMAGE FORMATION IN A CONCAVE MIRROR

Ray Model of Light		IMAGE			
, ,	Location of Object	Location	Orientation (upright or inverted)	Size (same, smaller or larger)	Type (real or virtual)
	A. Farther than the Center of Curvature	Bet. F and C	inverted	smaller	real
	B. At the Center of Curvature	At C	inverted	same size	real
Normal	C. Between the Center of Curvature and the Focal point	Beyond C	inverted	larger	real
	D. At the Focal point	No Image			
Incident ray reflected ray	E. Between the Focal point and the Center of the mirror (Vertex)	Behind the mirror	upright	larger	virtual

By Aya.Rivera (Aya.Rivera) cheatography.com/aya-rivera/

Published 16th October, 2025. Last updated 16th October, 2025. Page 2 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com