

Discrete Math Cheat Sheet

by AviMaths (AviMathPerson) via cheatography.com/189338/cs/42865/

Important relations

Reflexive: Shorthand: $Ia \subseteq R$ Meaning: Every element is related to itself. for all $a \in A$, aRa holds ($R \subseteq \{(a, a) \mid a \in A\}$)

Transitive: Shorthand: $(R \circ R = R2 \subseteq R)$ Meaning: If $((a, b) \in R)$ and $((b, c) \in R)$, then $((a, c) \in R)$. (aRb and bRc) -> aRc

 $Symmetric: \quad Shorthand: (\ R = R^{-1}\)\ Meaning: If (\ (a,\,b) \in R\),\ then\ (\ (b,\,a) \in R\).\ When\ aRb <=> bRa$

Antisy-Shorthand: ($R \cap R^{-1} \subseteq \{(a, a) \mid a \in A\}$) Meaning: If ($(a, b) \in R$) and ($(b, a) \in R$), then (a = b). (aRb and bRa) -> (a = b) - This

mmetric: does not mean not-symmetric

Equivalence relation is one where Reflexivity, Transitivity, and Symmetry all hold

Cardinality							
Cardinality	Classification	Examples					
Aleph 0	Countably infinite	\mathbb{N}	$\mathbb{N} \times \mathbb{N}$	$\mathbb{N} \times \mathbb{N} \times \mathbb{N}$	\mathbb{Z}	Q	$\mathbb{Q} \times \mathbb{Q}$
Aleph	Uncountably infinite	(0,1)	{0,1}^№	P (ℕ)	\mathbb{R}	$\mathbb{R} \times \mathbb{R}$	C
Finite	Countably finite	if $A = \{1\}, A = 1$	{3,4,5}	{1,2,1000}			

Combinatorics		
Case:	Order matters	Order doesn't matter
With repetition	n^k (case 1)	nCk (case 3)
Without repetition	nPk (case 2)	(k+n-1)C(k) (case 4)

Functions							
Let f,g be	Let f,g be two functions, (f:A -> B) , (g:B -> A)						
Function f	Horizontal line test	Classific- ation	Invert- ibility	G is - inverse of f	Definition	English	
Onto	Hits at least 1 point	Surjective	Right invertible	f∘g=Ib	$\{f(a) \mid a \in A\} = B$ every element in range (B) has a source	function that maps one or more elements of A to the same element of B	

By AviMaths (AviMathPerson)

Published 27th March, 2024. Last updated 27th March, 2024. Page 1 of 4. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

cheatography.com/avimathperson/ unitmeasure.xyz

Discrete Math Cheat Sheet

by AviMaths (AviMathPerson) via cheatography.com/189338/cs/42865/

Functions (cont)							
One to One	Hits at most 1 point	Injective	Left Invertible	g∘f= la	if a1 != a2 then f(a1) != f(a2) or contrapositive if f(a1) = f(a2) then a1 = a2	function that always maps the distinct element of its domain to the distinct element of its codomain	
Onto and One to One	Hits exactly at 1 point	Bijective	Invertible	$g \circ f =$ la, $f \circ g$ = lb	f ⁻¹ = g	function that is both injective and surjective	
Identity Ia	Hits exactly at 1 point	Bijective	Invertible	f ∘ la = f = lb ∘ f	f(a) = a	function that always returns the value that was used as its argument, unchanged	

 $(g \circ f)(a) = g(f(a))$ means g composed with f

Set Theory

 $A \cup B = \{x \in A \text{ or } x \in B \text{ or both}\}$

 $A \cap B = \{x \in A \text{ and } x \in B\}$

 $A \oplus B = (A - B) \cup (B - A) = (A \cup B) - (A \cap B)$

 $A - B = A \cap B^c = \{x \in A \text{ and } x \notin B\}$

Demorgan's laws:

 $(A \cup B)^c = A^c \cap B^c$

 $(A \cap B)^c = A^c \cup B^c$

Associativity:

 $A \cup (B \cup C) = (A \cup B) \cup C = A \cup B \cup C$

Distributivity;

 $\mathsf{A} \cup (\mathsf{B} \cap \mathsf{C}) = (\mathsf{A} \cup \mathsf{B}) \cap (\mathsf{A} \cup \mathsf{C})$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Subsets

 $A \subseteq A \cup B = B \cup A$

B⊆A∪B

If $A \subseteq B$, then $A \cup B = B$

 $A \cap B \subseteq A \subseteq A \cup B$

 $B \cap A \subseteq B \subseteq A \cup B$

Cartesian product:

 $A \times B = \{ (a, b) \mid a \in A \text{ and } b \in B \}$

an unordered set of sets of ordered pairs

where a is in A, b is in B

if $A = \{1,2\}$, $B = \{2,3\}$, then $A \times B = \{(1,2)$,

(1,3), (2,2), (2,3)

 $A \times B \neq B \times A \text{ (unless } A = B)$

 $A \cap (A \times B) = \emptyset$

 $|A \times B| = |A| \times |B|$

Distribution:

 $A \times (B \cup C) = (A \times B) \cup (A \times C)$

 $A \times (B \cap C) = (A \times B) \cap (A \times C)$

Order relation

Partial order If and only if all (Reflexivity, Transitivity, and Anti-symmetry) hold clear hasse diagram can be drawn

Order relation (cont)

items for which the relation doesn't hold will be drawn but not connected to the others in the diagram

Total/Linear order:

Partial order holds

Totality: For any ($a, b \in A$), either ($(a, b) \in$

R) or ((b, a) \in R).

In other words: For any two distinct elements a and b, either a is related to b (a

hasse diagram would be a straight line (all elements relate to one another in this set)

 \leq b), or b is related to a (b \leq a).

Universal Set

Universal Set = U:

for any finite set A

 $U = \{ x \in U \mid x \notin A \}$

 $A^c = U - A$

 $(A_c)_c = A$

 $U^c = \emptyset$

 $\emptyset^c = U$

Relations

Relations (cont)

R consists of all pairs in R but with their elements reversed. If (a,b) is in R, then (b,a) is in R⁻¹

Composition of relations:

 $R \circ S = \{ (a, c) \mid \exists b : (a, b) \in R \text{ and } (b, c) \in S \}$

Set of pairs (a,c) such that exists an element b for which both (a,b) is in R and (b,c) is in S

 $R \circ R = R2$ is a relation composed with itself $(R \circ S) \circ T = R \circ (S \circ T)$ i.e it is associative (but not communitive)

la∘R=R

Order relation terms

ARB = $(a,b) \in R$ Identity: Ia = (a,a)Ex: $\{(1,1),(2,2),(3,3), \dots\}$ Relation on set itself: $R \subseteq A \times A$ ARA is another way to write it too. Empty relation when $R = \emptyset$ implies that the relation R is empty, meaning it does not hold between any two pairs. It's essentially a relation with no elements.

Complete relation when $R = A \times B$ implies that the relation R contains all possible pairs that can be formed by taking one element from set A and one element from set B. It's a relation where every element of A is related to every element of B.

Inverse relation is $R^{-1} = \{ (b, a) \mid (a, b) \in R \}$

Minimal	An element a is minimal if there is no b such that b precedes a.	Elements with nothing less than them (no predec- essors)
Minimum	An element a is a minimum if for all b, a precedes b	Element that is less than everything else (either a set has 1 minimum or no minimum element)
Maximal	An element a is maximal if there is no b such that a precedes b	follows from minimal (with greater than)
Maximum	An element a is a maximum if for all b, b precedes a	follows from minimum (with greater than)

Power sets

The power set of A is denoted as P(A) or 2A

 $A\in P(A),\,\varnothing\in P(A)$

If |A| = n, then |P(A)| = 2n

|P(A)| = 2|A|

If $A = \emptyset$, then $P(A) = \{\emptyset\}$

C

unitmeasure.xyz

By **AviMaths** (AviMathPerson)

cheatography.com/avimathperson/

Published 27th March, 2024. Last updated 27th March, 2024. Page 3 of 4. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

Discrete Math Cheat Sheet

by AviMaths (AviMathPerson) via cheatography.com/189338/cs/42865/

Power sets (cont)

If $A = \{1,2\}$, then $P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$ |A| < |P(A)|

Power set proofs

 $P(A) \cap P(B) = P(A \cap B)$

element in $P(A) \cap P(B)$. By definition of intersection, X belongs to both P(A) and P(B). This implies X is a subset of both A and B. Consequently, X is also a subset of their intersection, $A \cap \Box$ \Box . Thus, X is an element of $P(A \cap \Box \Box)$. Therefore, $P(A) \cap P(B) \subseteq P(A \cap B)$.

Forward Inclusion: Let *X* be an arbitrary

Reverse Inclusion: Let Y be an arbitrary element in $P(A \cap B)$. By definition, \square

□ is a subset of $A \cap B$, hence a subset of both A and B. Consequently, Y belongs to both P(A) and P(B).

Thus, Y is an element of $P(A) \cap \square$ $\square(B)$. Therefore, $P(A \cap B) \subseteq P(A) \cap$ P(B).

Conclusion: Combining both directions of inclusion, we've demonstrated that P(A) \cap $P(B) \subseteq P(A \cap B)$ and $P(A \cap \Box \Box) \subseteq P(A) \cap P(B)$, implying $P(A) \cap P(B) = P(A \cap B)$. Thus, the equality holds.

 $\mathsf{P}(\mathsf{A}) \cup \mathsf{P}(\mathsf{B}) \neq \mathsf{P}(\mathsf{A} \cup \mathsf{B})$

Example of why these aren't equal: $A = \{1\}, B = \{2\}, A \cup B = \{1,2\} \Longrightarrow P(A \cup B) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$

 $P(A) = \{\emptyset, \{1\}\}, P(B) = \{\emptyset, \{2\}\} \Longrightarrow P(A) \cup P(B) = \{\emptyset, \{1\}, \{2\}\}$

More combinatorics

number of ways to place k balls in n boxes.

P = permutation

Order matters = sequence of choices

More combinatorics (cont)

Order doesn't matter = if we picked ball 1 then ball 2... it would be equivalent to picking ball 2 then ball 1

With replacement = same item can be picked several times

Without replacement= each item is chosen at most, 1 time

Case 1

K times out of n objects

Number of functions from A to B

|A| = K, |B| = n

if A has 3 elements, and B has 5... we would get 5³ total functions that can be defined

Case 2

K unique balls in n small boxes (can only fit 1 item in each box)

number of one to one functions from A to B

Case 3

K identical balls in n small boxes Binomial coefficients

Case 4

Bars and stars

K identical balls in n numbered boxes (but each box can hold >= 0 balls)

C = combination
Order matters = :

By **AviMaths** (AviMathPerson)

cheatography.com/avimathperson/ unitmeasure.xyz Published 27th March, 2024. Last updated 27th March, 2024. Page 4 of 4. Sponsored by **Readable.com**Measure your website readability!
https://readable.com