Discrete Math Cheat Sheet

by AviMaths (AviMathPerson) via cheatography.com/189338/cs/42865/

Important relations							
Reflexive:	Shorthand: la $\subseteq R$ Meaning: Every element is related to itself. for all $a \in A$, aRa holds ($R \subseteq\{(a, a) \mid a \in A\}$)						
Transitive:	Shorthand: ($R \circ R=R 2 \subseteq R)$ Meaning: If $((a, b) \in R)$ and $((b, c) \in R)$, then $((a, c) \in R) .(a R b$ and $b R c)->a R c$						
Symmetric:	Shorthand: ($R=R^{-1}$) Meaning: If $((a, b) \in R)$, then $((b, a) \in R)$. When $a R b<=>b R a$						
Antisymmetric:	Shorthand: $\left(R \cap R^{-1} \subseteq\{(a, a) \mid a \in A\}\right)$ Meaning: If $((a, b) \in R)$ and $((b, a) \in R)$, then $(a=b)$. $(a R b$ and $b R a)->(a=b)$ - This does not mean not-symmetric						
Equivalence relation is one where Reflexivity, Transitivity, and Symmetry all hold							
Cardinality							
Cardinality	Classification	Examples					
Aleph 0	Countably infinite	N	Nx N	NxNxN	Z	Q	Q x Q
Aleph	Uncountably infinite	$(0,1)$	$\{0,1\}^{\wedge} \mathrm{N}$	P (N)	R	$\mathrm{R} \times \mathrm{R}$	C
Finite	Countably finite	if $\mathrm{A}=\{1\},\|\mathrm{A}\|=1$	\{3,4,5\}	$\{1,2, \ldots .100$			

Combinatorics		
Case:	Order matters	Order doesn't matter
With repetition	$n \wedge k$ (case 1)	$n C k$ (case 3)
Without repetition	$n P k$ (case 2)	$(k+n-1) \mathrm{C}(\mathrm{k})($ case 4)

Functions

Let f, g be two functions, ($\mathrm{f}: \mathrm{A}->\mathrm{B}$) , ($\mathrm{g}: \mathrm{B}$-> A)

Function f	Horizontal line test	Classification	Invertibility	G is - inverse of f	Definition	English
Onto	Hits at least 1 point	Surjective	Right invertible	$f \circ g=l b$	$\{f(a) \mid a \in A\}=B$ every element in range (B) has a source	function that maps one or more elements of A to the same element of B

By AviMaths (AviMathPerson)
cheatography.com/avimathperson/ unitmeasure.xyz

Published 27th March, 2024.
Last updated 27th March, 2024. Page 1 of 4 .

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish
Yours!
https://apollopad.com

Functions (cont)						
One to One	Hits at most 1 point	Injective	Left Invertible	$\begin{aligned} & \mathrm{g} \circ \mathrm{f}= \\ & \mathrm{la} \end{aligned}$	if a1 != a2 then $f(a 1)!=f(a 2)$ or contrapositive if $f(a 1)=f(a 2)$ then a1 $=$ a2	function that always maps the distinct element of its domain to the distinct element of its codomain
Onto and One to One	Hits exactly at 1 point	Bijective	Invertible	$\begin{aligned} & g \circ f= \\ & l a, f \circ g \\ & =l b \end{aligned}$	$\mathrm{f}^{-1}=\mathrm{g}$	function that is both injective and surjective
Identity la	Hits exactly at 1 point	Bijective	Invertible	$\begin{aligned} & f \circ l a= \\ & f=l b \circ \\ & f \end{aligned}$	$f(a)=a$	function that always returns the value that was used as its argument, unchanged

$(g \circ f)(a)=g(f(a))$ means g composed with f

Set Theory

$A \cup B=\{x \in A$ or $x \in B$ or both $\}$
$A \cap B=\{x \in A$ and $x \in B\}$
$A \oplus B=(A-B) \cup(B-A)=(A \cup B)-(A \cap B)$
$A-B=A \cap B^{c}=\{x \in A$ and $x \notin B\}$
Demorgan's laws:
$(A \cup B)^{c}=A^{c} \cap B^{c}$
$(A \cap B)^{c}=A^{c} \cup B^{c}$
Associativity:
$A \cup(B \cup C)=(A \cup B) \cup C=A \cup B \cup C$
Distributivity;
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

Subsets

$A \subseteq A \cup B=B \cup A$
$B \subseteq A \cup B$
If $A \subseteq B$, then $A \cup B=B$
$A \cap B \subseteq A \subseteq A \cup B$
$B \cap A \subseteq B \subseteq A \cup B$

Cartesian product:

$A \times B=\{(a, b) \mid a \in A$ and $b \in B\}$
an unordered set of sets of ordered pairs
where a is in A, b is in B
if $A=\{1,2\}, B=\{2,3\}$, then $A \times B=\{(1,2)$,
$(1,3),(2,2),(2,3)\}$
$A \times B \neq B \times A$ (unless $A=B$)
$A \cap(A \times B)=\varnothing$
$|A \times B|=|A| \times|B|$
Distribution:
$A \times(B \cup C)=(A \times B) \cup(A \times C)$
$A \times(B \cap C)=(A \times B) \cap(A \times C)$

Order relation

Partial order If and only if all (Reflexivity, Transitivity, and Anti-symmetry) hold clear hasse diagram can be drawn

Order relation (cont)

items for which the relation doesn't hold will be drawn but not connected to the others in the diagram

Total/Linear order:
Partial order holds
Totality: For any $(a, b \in A)$, either $((a, b) \in$ $R)$ or $((b, a) \in R)$.
In other words: For any two distinct elements a and b, either a is related to $b(a$ $\leq \mathrm{b}$), or b is related to $\mathrm{a}(\mathrm{b} \leq \mathrm{a})$.
hasse diagram would be a straight line (all
elements relate to one another in this set)

Universal Set

Universal Set = U:
for any finite set A
$U=\{x \in U \mid x \notin A\}$
$A^{c}=U-A$
$\left(A^{c}\right)^{c}=A$
$U^{c}=\varnothing$
$\varnothing^{c}=U$

Relations (cont)

R consists of all pairs in R but with their elements reversed. If (a, b) is in R, then (b, a) is in R^{-1}
Composition of relations:
$R \circ S=\{(a, c) \mid \exists b:(a, b) \in R$ and $(b, c) \in$ S \}
Set of pairs (a, c) such that exists an element b for which both (a, b) is in R and (b,c) is in S
$R \circ R=R 2$ is a relation composed with itself $(R \circ S) \circ T=R \circ(S \circ T)$ i.e it is associative (but not communitive)
la $\circ R=R$

Order relation terms

$$
\begin{aligned}
& \text { ARB }=(a, b) \in R \\
& \text { Identity: } l a=(a, a) \\
& \text { Ex: }\{(1,1),(2,2),(3,3), \ldots\} \\
& \text { Relation on set itself: } R \subseteq A \times A \\
& \text { ARA is another way to write it too. } \\
& \text { Empty relation when } R=\varnothing \\
& \text { implies that the relation } R \text { is empty, } \\
& \text { meaning it does not hold between any two } \\
& \text { pairs. It's essentially a relation with no } \\
& \text { elements. } \\
& \text { Complete relation when } R=A \times B \\
& \text { implies that the relation } R \text { contains all } \\
& \text { possible pairs that can be formed by taking } \\
& \text { one element from set } A \text { and one element } \\
& \text { from set } B \text {. It's a relation where every } \\
& \text { element of } A \text { is related to every element of } \\
& B \text {. } \\
& \text { Inverse relation is } R^{-1}=\{(b, a) \mid(a, b) \in R\}
\end{aligned}
$$

Minimal	An element a is minimal if there is no b such that b precedes a.	Elements with nothing less than them (no predecessors)
Minimum	An element a is a minimum if for all b, a precedes b	Element that is less than everything else (either a set has 1 minimum or no minimum element)
Maximal	An element a is maximal if there is no b such that a precedes b	follows from minimal (with greater than)
Maximum	An element a is a maximum if for all b, b precedes a	follows from minimum (with greater than)

Power sets

The power set of A is denoted as $P(A)$ or
2A
$A \in P(A), \varnothing \in P(A)$
If $|A|=n$, then $|P(A)|=2 n$
$|P(A)|=2|A|$
If $A=\varnothing$, then $P(A)=\{\varnothing\}$

By AviMaths (AviMathPerson)
Published 27th March, 2024.
Last updated 27th March, 2024.
Page 3 of 4 .

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

Discrete Math Cheat Sheet
by AviMaths (AviMathPerson) via cheatography.com/189338/cs/42865/

Power sets (cont)

If $A=\{1,2\}$, then $P(A)=\{\varnothing,\{1\},\{2\},\{1,2\}\}$
$|A|<|P(A)|$

Power set proofs

$P(A) \cap P(B)=P(A \cap B)$
Forward Inclusion: Let X be an arbitrary element in $P(A) \cap P(B)$. By definition of intersection, X belongs to both $P(A)$ and $P(B)$. This implies X is a subset of both A and B. Consequently, X is also a subset of their intersection, $A \cap \square$
\square. Thus, X is an element of $P(A \cap \square$
$\square)$. Therefore, $P(A) \cap P(B) \subseteq P(A \cap$
$B)$.
Reverse Inclusion: Let Y be an arbitrary element in $P(A \cap B)$. By definition,
\square is a subset of $A \cap B$, hence a subset of both A and B. Consequently, Y belongs to both $P(A)$ and $P(B)$.
Thus, Y is an element of $P(A) \cap \square$
$\square(B)$. Therefore, $P(A \cap B) \subseteq P(A) \cap$
$P(B)$.
Conclusion: Combining both directions of inclusion, we've demonstrated that $P(A)$ $\cap P(B) \subseteq P(A \cap B)$ and $P(A \cap \square$ $\square) \subseteq P(A) \cap P(B)$, implying $P(A) \cap$ $P(B)=P(A \cap B)$. Thus, the equality holds.
$P(A) \cup P(B) \neq P(A \cup B)$

Example of why these aren't equal:
$A=\{1\}, B=\{2\}, A \cup B=\{1,2\}=>P(A \cup B)=$ $\{\varnothing,\{1\},\{2\},\{1,2\}\}$
$P(A)=\{\varnothing,\{1\}\}, P(B)=\{\varnothing,\{2\}\}=>P(A) \cup$ $P(B)=\{\varnothing,\{1\},\{2\}\}$

More combinatorics

number of ways to place k balls in n boxes.
$P=$ permutation
$\mathrm{C}=$ combination
Order matters = sequence of choices

By AviMaths (AviMathPerson)
cheatography.com/avimathperson/ unitmeasure.xyz

More combinatorics (cont)

Order doesn't matter = if we picked ball 1 then ball $2 \ldots$ it would be equivalent to picking ball 2 then ball 1
With replacement = same item can be picked several times
Without replacement= each item is chosen at most, 1 time

Case 1

K times out of n objects
Number of functions from A to B

$$
|\mathrm{A}|=\mathrm{K},|\mathrm{~B}|=\mathrm{n}
$$

if A has 3 elements, and B has $5 \ldots$ we would get $5^{\wedge} 3$ total functions that can be defined
Case 2
K unique balls in n small boxes (can only fit 1 item in each box)
number of one to one functions from A to B

Case 3

K identical balls in n small boxes
Binomial coefficients

Case 4

Bars and stars
K identical balls in n numbered boxes (but each box can hold >= 0 balls)

Published 27th March, 2024.
Last updated 27th March, 2024.
Page 4 of 4.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

