Cheatography

Chemistry - Chapter 11:Organic Compound Properties Cheat Sheet by Autumn (Autumn) via cheatography.com/145676/cs/31396/

Organic Reactions

Substitution Reactions

Alkanes:

 \mathbb{C} Alkane + Halogen \rightarrow Haloalkane

Haloalkanes:

C Haloalkane + NH₃ → Amine

Addition Reactions

Alkenes:

ᡌ Alkene + Hydrogen -Metal Catalyst→ Alkane

 $\ref{eq: Catalyst} \rightarrow Alkene + H_2O - H_3PO_4 \ Catalyst \rightarrow Alcohol \\$

C Alkene + Hydrogen Halide → Haloalkane

 \bigcirc Alkene + Halogen \rightarrow Dihaloalkane

Hydrolysis Reactions

Esters:

 \mathbb{C} Ester + H₂O \rightarrow Carboxylic Acid + Alcohol

Oxidation Reactions

Alcohols:

IC Primary Alcohol + Inorganic Oxidant → Aldehyde (Low Temp) or Carboxylic Acid (High Temp)

C Tertiary alcohols can't undergo oxidation

Aldehydes:

Carboxylic Acid

Condensation Reactions

Carboxylic Acids:

c Esterification: Carboxylic Acid + Alcohol \rightarrow Ester + H₂O

 \square Carboxylic Acid + NH₃ → Primary Amide + H₂O

 $\ref{eq: Carboxylic Acid + Primary Amine} \rightarrow \\ Secondary Amide + H_2O \\ \end{cases}$

By Autumn (Autumn) cheatography.com/autumn/

Important Oxidants to Remember

Potassium Dichromate (K₂Cr₂O₇)

Potassium Permanganate (KMnO₄)

Organic Compound Physical Properties

Alkanes

C Low BP due to dispersion forces & 1x bonds

☆ Straight chains compress more closely
→ higher BP & dispersion forces

 $\textcircled{O} \text{ Non-polar} \rightarrow \text{insoluble in } H_2O$

Alkenes & Alkynes

🖒 Low BP

 $\red{P} \text{ Non-polar} \rightarrow \text{insoluble in } H_2O$

Haloalkanes

 ௴ Weak dispersion forces, but allows stronger dipole-dipole attractions
௴ Higher BP than alkanes
௴ Low solubility due to insignificant dipole-dipole interactions

Alcohols, Carboxylic Acids, Amines & Amides

௴ All have functional groups that form Hbonds (strongest intermolecular force)

C High BP due to H-bonds

C Highest-lowest BP for alcohol types: primary, secondary, tertiary

🖒 Soluble

Aldehydes, Ketones & Esters

C Held by dipole-dipole attractions

 $\ensuremath{{\rm C}}\xspace^{-1}$ Low BP due to no H-bonding with each other

Physical Properties

ho Boiling Point \rightarrow increases with size

 \mathbb{C} Solubility \rightarrow decreases with size

✔ Flashpoint: The lowest temp that a substance in vapour form combusts/ignites.
Works hand-in-hand with BP, but is always lower than BP

Percentage Yield Formula

```
% Yield = (AY÷TY) x 100
```

Actual Yield (AY)	Theoretical Yield (TY)
🖒 Actual amount made	C Estimated amount made by stoichiometry
ピア Usually given in question	

Calculating The Overall % Yield

C If A→B has \blacksquare % yield and the following reaction is B→C with ★%, and ..., then overall yield = (\blacksquare %) x (★%) x ..., x 100

Atom Economy

Atom Economy = (M_r of wanted product ÷ M_r of ALL reactants) x 100

C Measure of how many atoms in reactants end up in wanted product → aim to maximise atom economy

Not published yet. Last updated 6th July, 2022. Page 1 of 1. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com